| 研究生: |
張文騰 Wen-Teng Chang |
|---|---|
| 論文名稱: |
黏性土壤受定量擠壓變形後之力學行為 |
| 指導教授: |
張惠文
Huei-wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 主應力比 、定量擠壓變形 、側向土壓力 、穩定狀態 |
| 外文關鍵詞: | lateral earth pressure, constant compression deformation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多工程的進行,常會對土體施予定量之擠壓變形量。對黏性土
壤而言,受到㆒定量擠壓變形後,會激發超額孔隙水壓,造成側向土
壓力㆖升,在擠壓變形量不在增加之條件㆘,超額孔隙水壓逐漸消
散,側向土壓力隨之減少。在此㆒過程㆗,土壤之力學性質則隨之改
本研究以方形應力試驗儀進行側向擠壓試驗,對單向度壓密後土
體施加定量之側向擠壓變形後,量測擠壓方向與未受擠壓方向土壓力
之歷時變化。另外進行㆔軸軸向擠壓試驗,對徑向壓密後土體受定量
之軸向擠壓變形後,量測軸向應力σz 與超額孔隙水壓uw 隨時間的變
由試驗結果可知,土體受到定量擠壓變形後,其力學行為會由原
本以趨向被動之狀態逐漸回復至另㆒平衡之靜止土壓力狀態,側向土
壓力則趨於㆒穩定值,且此值會大於原先靜止土壓力狀態㆘之側向土
壓力;當定量擠壓變形量愈大,最終穩定狀態時擠壓方向之應力愈
大,且㆓水平應力間差距愈大。最後並以理論公式進㆒步建立穩定狀
態時,側向擠壓試驗主應力比與㆔軸軸向擠壓試驗主應力比之關係
Soils in ground may suffer a constant deformation in construction
progress. For saturated cohesive soils, excess pore water pressure and
lateral earth pressure may increase after the deformation occured. With no
deformation occurred continuously, the lateral earth pressure decreased
gradually as excess pore water pressure dissipated. During this process,
the mechanical properties of soils are changed.
In this research, the lateral compression tests of one-dimensional
consolidation soils with a specially designed square box were carried out
to measure the elasped variation of the horizontal earth pressures. Besides,
axially compressed triaxial tests were carried out to measure the elasped
variation of the axial pressure and the excess pore water pressure .
According to the results of the tests, the mechanical properties of
soils tended to passive state after the deformation occurred, and then
varied to another new equilibrium state. Finally, the lateral earth pressures
tended to some stable values, which were larger than the lateral earth
pressure in original condition. Besides, larger deformation caused larger
variation in horizontal earth pressures. Finally, an equation was proposed
for estimating the relationships between the principal stress ratio which
were obtained from the both tests.
116
參考文獻
土質工學會,土質調查法,土質工學會,第597~598 頁(1982)。
方永壽,「擋土結構物之土壓力考慮」,㆞工技術雜誌,第17 期,第
4~14 頁(2001)。
林建宏,「高壓噴射樁間土壤受側壓後之軸向伸張力學性質之研究」,
碩士論文,國立台灣科技大學營建工程學系,台北(2001)。
陳玉樹,「黏性土壤受側向擠壓之壓密應力鬆弛行為」,碩士論文,國
立㆗央大學土木工程學系,㆗壢(1994)。
陳靖文,「解壓變形對飽和黏土側向土壓力之影響」,碩士論文,國立
㆗央大學土木工程學系,㆗壢(1995)。
黃心泉,「水泥改良土側向土壓力之研究」,碩士論文,國立㆗央大學
土木工程學系,㆗壢(1993)。
黃南輝、廖建智、范陳柏,「深開挖工程㆗側向土壓力變化」,㆞工技
術雜誌,第55 期,第25~34 頁(1996)。
詹孟穎,「以砂土側向伸張與側向壓縮行為模擬土壓重新分布」,碩士
論文,㆗華大學土木工程學系,新竹(1998)。
歐晉德,「基樁受填土影響之側向力問題」,㆞工技術雜誌,第18 期,
第8~13 頁(1987)。
潘信元,「高壓噴射改良之樁間土壤力學特性試驗研究」,碩士論文,
117
國立台灣科技大學營建工程學系,台北(1999)。
錢偉長,彈性力學,亞東書局,第204~207 頁(1989)。
魏宇宏,「飽和砂土側向伸張與側向壓縮行為之研究」,碩士論文,㆗
華大學土木工程學系,新竹(1995)。
魏建生,「平面應變條件㆘黏土之力學性質」,碩士論文,國立㆗央大
學土木工程學系,㆗壢(1993)。
Abdelhamid, M.S. and Krizek, R.J, “At-rest lateral earth pressure of a
consolidating clay,” Journal of the Geotechnical Engineering, ASCE,
Vol.102, No.7, pp.721-738(1976).
Andraws, K.Z., and EI-Sohby M.A., “Factors affecting coefficient of
earth pressure K0,” Journal of the Soil Mechanics and Foundations
Division, ASCE, Vol.99, No.SM7, pp.527-539(1973).
Atkinson, J.H., Richardson, D., and Robinson, P.J., “Compression and
extension of K0 normally consolidated Kaolin clay,” Journal of the
Geotechnical Engineering, ASCE, Vol.113, No.12, pp.1468 –1481
(1987).
Bishop, A.W., “Test requirements for mearsuring the coefficient of earth
pressure at rest,” Proceedings, Brusels, Conferemce on Earth Pressure
Problems, Vol.1.1, pp.2-14(1958).
Bransby, P.L., and Milligan, G.W.E., “Soil deformations near cantilever
sheet pile walls,” Geotechnique, Vol.25, No.2, pp.175-195 (1975).
118
Brooker, E.W. and Ireland, H.O., “Earth pressure at rest related to stress
history,” Canadian Geotechnical Journal, Vol.2, No.1, pp.1-15 (1965).
Chen, L.T., and Poulos, H.G., “Pile subjected to lateral soil movements,”
Journal of the Geotechnical and Geoerviron- mental Engineering, ASCE,
Vol.123, No.9, pp.802-811(1997).
Duncan, J.M., and Mokwa, R. L., “Passive earth pressures: theories and
tests,” Journal of the Geotechnical and Geoerviron- mental
Engineering, ASCE, Vol.127, No.3, pp.249-257(2001).
Edil, T.B. and Dhowian, A.W., “At-rest lateral earth pressure of peat
soil,” Journal of the Geotechnical Engineering, ASCE, Vol.107, No.GT2,
pp.201-217(1981).
Kezdi, A., Handbook of soil mechaincs, Prentice-Hall, Inc.,
pp.243-247(1974).
Kumar, J., and Subga Rao, K.S., “Passive pressure coefficient, critical
failure surface and its kinematic admissability,” Geotechnique, Vol.47,
No.1, pp.185-192 (1997).
Lambe, T.W, and Whiteman, R.V., Soil Mechanics, John Wiley & Sons,
Inc., New York, pp.162-167 (1969).
Massarch, K.R., and Broms, B.B, “Later earth pressure at rest in soft
clays,” Journal of the Soil Mechanics and Foundations Division, ASCE,
Vol.102, No.GT10, pp.1041-1047(1976).
Masuda T., Tatsuoka F., Yamada S., and Sato T., “Stress-strain behavior
of sand in plane strain compression, extension and cyclic loading tests,”
Soil and Foundations, Vol.39, No.5, pp.31-45 (1999).
Mayne, P.W., and Kulhawa, F.B., “K0-OCR relationship in soil,” Journal
of the Geotechnical Engineering Division, ASCE, Vol.107, No.GT2,
pp.201-217(1982).
Mesri, G., and Godlewski, P. M., “Time and stress-compressibility
interrelationship,” Journal of the Geotechnical Engineering Division,
ASCE, Vol.103, No.GT5, pp.417-430(1977).
Sherif, M.A., Fang, Y.S., and Sherif, R.I, “Ka, and K0 behind rotating and
Non-yielding walls,” Journal of the Geotechnical Engineering, Vol.110,
No.1, pp.41-56 (1984).
Soubra, A.H., “Static and seismic earth pressure coefficients on rigid
retainng structures,” Canadian Geotechnical Journal, Vol.37, pp.463-478
(2000).
Vaid, Y. P., and Campanella, R.G., “Triaxial and plane strain behavior of
natural clay,” Journal of the Geotechnical Engineering Division, ASCE,
Vol.100, No.GT3, pp.207-224(1974).