跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉政威
Yeh, Cheng-Wei
論文名稱: Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
指導教授: 郭家銘
Kuo, Chia-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 122
中文關鍵詞: 高能物理希格斯玻色子
外文關鍵詞: High energy physics, Higgs boson
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本篇論文旨在尋找於質子–質子對撞下產生的雙希格斯粒子,分別衰變至一對光子及一對底夸克。
    本分析使用了於2016年由大強子對撞機(LHC)產生的質子–質子對撞,總能量為√s=13 TeV,並由緊湊緲子線圈(CMS)所記錄,總亮度達到35.9/fb。
    此研究基於標準模型以及超越標準模型的理論,同時尋找非共振衰變的雙希格斯粒子以及由新粒子衰變的雙希格斯粒子。
    非共振衰變可用於驗證希格斯機制以及探索其他可能的希格斯粒子與其他粒子的交互作用。
    多維度模型預測了兩種與重力相關的新粒子,且這些新粒子可衰變到雙希格斯粒子。
    本研究使用機器學習來輔助重建來自底夸克的強子噴流能量,使預測的生產截面的信心水準上限下降百分之十,達到更佳的結果。
    本研究沒有觀察到顯著的訊號事件,並提供了實驗上對理論參數以及新粒子重量的限制區間。


    The search is presented for the production of a pair of Higgs bosons in the final state with two photons and two b quarks by full 2016 data, which corresponds to an integrated luminosity of 35.9/fb recorded by the CMS detector.
    Both resonant and non-resonant processes are investigated for the Standard Model (SM) and the Beyond the Standard Model (BSM) theories.
    The non-resonant production helps us to understand the Higgs field structure in the SM and other possible effects from BSMs.
    The resonant production is predicted by many BSMs. In this thesis, the hypothesis with the spin-0 and spin-2 new heavy particles which can decay into two Higgs bosons is searched and compared with the prediction from the warped extra dimension theory.
    The b-jet energy regression specifically developed for this analysis are employed to improve the sensitivity about 10%.
    The observed results agree with the standard model prediction, and the limits on the exclusion of the BSM productions are also set.

    Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Theoretical overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Resonant pair production . . . . . . . . . . . . . . . . . . . 5 1.2.3 Non-resonance pair production . . . . . . . . . . . . . . . . 8 1.2.4 Decay channels . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 Previous result . . . . . . . . . . . . . . . . . . . . . . . . . 14 ATLAS Run I search . . . . . . . . . . . . . . . . . . . . . . 14 CMS Run I search . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The LHC Machine and the CMS detector 19 2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The Compact Muon Solenoid . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Magnetic system . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.3 Electromagnetic calorimeter (ECAL) . . . . . . . . . . . . . 24 2.2.4 Hadronic calorimeter (HCAL) . . . . . . . . . . . . . . . . 27 2.2.5 Muon system . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.6 Trigger and data acquisition system . . . . . . . . . . . . . 29 3 Multivariate data analysis 33 3.1 Toolkit for Multivariate Data Analysis (TMVA) . . . . . . . . . . . 33 3.1.1 Boosted decision trees (BDT) . . . . . . . . . . . . . . . . . 33 3.1.2 Gradient Boosting and pruning . . . . . . . . . . . . . . . . 34 3.2 Photon identification . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Di-photon vertex identification . . . . . . . . . . . . . . . . 37 3.2.2 Photon identification . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Photon energy regression . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 B-jet identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 B-jet energy regression . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.1 Training samples . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.2 Training method . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Mass resolution . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.4 The improvement from the three additional input vari- ables and the training with leading and trailing jets sep- arately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.5 Data validation . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.6 Impact on the results . . . . . . . . . . . . . . . . . . . . . . 65 3.6 HH → b ¯ bγγ categorization MVA . . . . . . . . . . . . . . . . . . . 65 4 Event selection 69 4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Resonant Monte Carlo signal samples . . . . . . . . . . . . 69 4.1.3 Non-resonant Monte Carlo signal samples . . . . . . . . . 72 4.1.4 Background simulation . . . . . . . . . . . . . . . . . . . . 74 4.2 Physical objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 The H → γγ candidate . . . . . . . . . . . . . . . . . . . . . 74 Trigger mimic pre-selection . . . . . . . . . . . . . . . . . . 74 H → γγ selection . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.2 The H → b ¯ b candidate . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 The di-Higgs system . . . . . . . . . . . . . . . . . . . . . . 76 4.2.4 Signal selection efficiency . . . . . . . . . . . . . . . . . . . 78 5 Modeling 79 5.1 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.1 Correlation Studies . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Background modeling . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 Bias Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.2 Correlation Studies . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.3 Single Higgs background modeling . . . . . . . . . . . . . 87 5.3 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Results 91 6.1 Resonance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Non-resonance results . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Conclusion 95 Bibliography 97

    [1] The CMS Collaboration. “Observation of a new boson at a mass of 125
    GeV with the CMS experiment at the LHC”. In: (2012). DOI: 10.1016/j.
    physletb.2012.08.021. eprint: arXiv:1207.7235.
    [2] The ATLAS Collaboration. “Observation of a new particle in the search for
    the Standard Model Higgs boson with the ATLAS detector at the LHC”.
    In: (2012). DOI: 10.1016/j.physletb.2012.08.020. eprint: arXiv:
    1207.7214.
    [3] ATLAS and CMS Collaborations. “Measurements of the Higgs boson pro-
    duction and decay rates and constraints on its couplings from a combined
    ATLAS and CMS analysis of the LHC pp collision data at

    s = 7 and 8
    TeV”. In: (2016). DOI: 10 . 1007 / JHEP08(2016 ) 045. eprint: arXiv :
    1606.02266.
    [4] D. de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. Decipher-
    ing the Nature of the Higgs Sector”. In: (2016). DOI: 10.23731/CYRM-
    2017-002. eprint: arXiv:1610.07922.
    [5] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vec-
    tor Mesons”. In: Physical Review Letters 13.9 (1964), pp. 321–323. DOI: 10.
    1103/physrevlett.13.321. URL: https://doi.org/10.1103/
    physrevlett.13.321.
    [6] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
    In: Physical Review Letters 13.16 (1964), pp. 508–509. DOI: 10 . 1103 /
    physrevlett . 13 . 508. URL: https : / / doi . org / 10 . 1103 /
    physrevlett.13.508.
    [7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conserva-
    tion Laws and Massless Particles”. In: Physical Review Letters 13.20 (1964),
    pp. 585–587. DOI: 10.1103/physrevlett.13.585. URL: https://
    doi.org/10.1103/physrevlett.13.585.
    [8] Mark Thomson. Modern particle physics. New York: Cambridge University
    Press, 2013. ISBN: 9781107034266. URL: http://www- spires.fnal.
    gov/spires/find/books/www?cl=QC793.2.T46::2013.
    [9] F. Maltoni, E. Vryonidou, and M. Zaro. “Top-quark mass effects in double
    and triple Higgs production in gluon-gluon fusion at NLO”. In: (2014).
    DOI: 10.1007/JHEP11(2014)079. eprint: arXiv:1408.6542.
    [10] J. Baglio et al. “The measurement of the Higgs self-coupling at the LHC:
    theoretical status”. In: (2012). DOI: 10.1007/JHEP04(2013)151. eprint:
    arXiv:1212.5581.
    [11] R. Frederix et al. “Higgs pair production at the LHC with NLO and parton-
    shower effects”. In: (2014). DOI: 10.1016/j.physletb.2014.03.026.
    eprint: arXiv:1401.7340.
    [12] Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali. “The Hierarchy
    Problem and New Dimensions at a Millimeter”. In: (1998). DOI: 10.1016/
    S0370-2693(98)00466-3. eprint: arXiv:hep-ph/9803315.
    [13] Lisa Randall and Raman Sundrum. “A Large Mass Hierarchy from a Small
    Extra Dimension”. In: (1999). DOI: 10.1103/PhysRevLett.83.3370.
    eprint: arXiv:hep-ph/9905221.
    [14] Alexandra Carvalho. Gravity particles from Warped Extra Dimensions, predic-
    tions for LHC. 2014. eprint: arXiv:1404.0102.
    [15] A. Liam Fitzpatrick et al. “Searching for the Kaluza-Klein Graviton in Bulk
    RS Models”. In: (2007). DOI: 10.1088/1126- 6708/2007/09/013.
    eprint: arXiv:hep-ph/0701150.
    [16] https://github.com/CrossSectionsLHC/WED.
    [17] Aielet Efrati and Yosef Nir. What if λ hhh 6= 3m 2
    h
    /v. 2014. eprint: arXiv:
    1401.0935.
    [18] B. Grzadkowski et al. “Dimension-Six Terms in the Standard Model La-
    grangian”. In: (2010). DOI: 10.1007/JHEP10(2010)085. eprint: arXiv:
    1008.4884.
    [19] Florian Goertz et al. “Higgs boson pair production in the D=6 extension of
    the SM”. In: (2014). DOI: 10.1007/JHEP04(2015)167. eprint: arXiv:
    1410.3471.
    [20] W. Buchmüller and D. Wyler. “Effective lagrangian analysis of new in-
    teractions and flavour conservation”. In: Nuclear Physics B 268.3-4 (1986),
    pp. 621–653. DOI: 10.1016/0550-3213(86)90262-2. URL: https:
    //doi.org/10.1016/0550-3213(86)90262-2.
    [21] Alexandra Carvalho et al. “Higgs Pair Production: Choosing Benchmarks
    With Cluster Analysis”. In: (2015). DOI: 10.1007/JHEP04(2016)126.
    eprint: arXiv:1507.02245.
    [22] Alexandra Carvalho et al. Analytical parametrization and shape classification
    of anomalous HH production in the EFT approach. 2016. eprint: arXiv:1608.
    06578.
    [23] Performance of b tagging at sqrt(s)=8 TeV in multijet, ttbar and boosted topology
    events. Tech. rep. CMS-PAS-BTV-13-001. Geneva: CERN, 2013. URL: http:
    //cds.cern.ch/record/1581306.
    [24] CMS Collaboration. “Reconstruction and identification of tau lepton de-
    cays to hadrons and tau neutrino at CMS”. In: (2015). DOI: 10.1088/
    1748-0221/11/01/P01019. eprint: arXiv:1510.07488.
    [25] ATLAS Collaboration. “Search for Higgs boson pair production in the b
    ¯
    bb
    ¯
    b
    final state from pp collisions at

    s = 8 TeV with the ATLAS detector”. In:
    (2015). DOI: 10.1140/epjc/s10052- 015- 3628- x. eprint: arXiv:
    1506.00285.
    [26] ATLAS Collaboration. “Search For Higgs Boson Pair Production in the
    γγb
    ¯
    b Final State using pp Collision Data at

    s = 8 TeV from the ATLAS De-
    tector”. In: (2014). DOI: 10.1103/PhysRevLett.114.081802. eprint:
    arXiv:1406.5053.
    [27] ATLAS Collaboration. “Searches for Higgs boson pair production in the
    hh → bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector”. In:
    (2015). DOI: 10.1103/PhysRevD.92.092004. eprint: arXiv:1509.
    04670.
    [28] Daniel de Florian and Javier Mazzitelli. “Higgs Boson Pair Production
    at Next-to-Next-to-Leading Order in QCD”. In: (2013). DOI: 10.1103/
    PhysRevLett.111.201801. eprint: arXiv:1309.6594.
    [29] CMS Collaboration. “Search for resonant pair production of Higgs bosons
    decaying to two bottom quark-antiquark pairs in proton-proton collisions
    at 8 TeV”. In: (2015). DOI: 10.1016/j.physletb.2015.08.047. eprint:
    arXiv:1503.04114.
    [30] CMS Collaboration. “Search for two Higgs bosons in final states contain-
    ing two photons and two bottom quarks in proton-proton collisions at 8
    TeV”. In: (2016). DOI: 10.1103/PhysRevD.94.052012. eprint: arXiv:
    1603.06896.
    [31] CMS Collaboration. “A search for Higgs boson pair production in the bb
    tau tau final state in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2017).
    DOI: 10.1103/PhysRevD.96.072004. eprint: arXiv:1707.00350.
    [32] CMS Collaboration. “Search for heavy resonances decaying to two Higgs
    bosons in final states containing four b quarks”. In: (2016). DOI: 10.1140/
    epjc/s10052-016-4206-6. eprint: arXiv:1602.08762.
    [33] Search for resonant pair production of Higgs bosons decaying to b
    ¯
    b and τ + τ

    in proton-proton collisions at

    s = 8 TeV. Tech. rep. CMS-PAS-EXO-15-008.
    Geneva: CERN, 2015. URL: https://cds.cern.ch/record/2125293.
    [34] Lyndon Evans and Philip Bryant. “LHC Machine”. In: JINST 3 (2008),
    S08001. DOI: 10.1088/1748-0221/3/08/S08001.
    [35] CERN. Accelerator Performance and Statistics. http://acc-stats.web.
    cern.ch/acc-stats/.
    [36] CMS Collaboration. CMS Luminosity Public Results. https://twiki.
    cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults.
    [37] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3
    (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
    [38] The CMS magnet project: Technical Design Report. Technical Design Report
    CMS. Geneva: CERN, 1997. URL: http : // cds . cern . ch / record /
    331056.
    [39] The CMS Collaboration. “Description and performance of track and
    primary-vertex reconstruction with the CMS tracker”. In: JINST 9.10
    (2014), P10009. DOI: 10.1088/1748-0221/9/10/P10009.
    [40] V Karimäki et al. The CMS tracker system project: Technical Design Report.
    Technical Design Report CMS. Geneva: CERN, 1997. URL: https://cds.
    cern.ch/record/368412.
    [41] Cristina Biino. “The CMS Electromagnetic Calorimeter: overview, lessons
    learned during Run 1 and future projections”. In: Journal of Physics: Con-
    ference Series 587.1 (2015), p. 012001. URL: http://stacks.iop.org/
    1742-6596/587/i=1/a=012001.
    [42] The CMS electromagnetic calorimeter project: Technical Design Report. Tech-
    nical Design Report CMS. Geneva: CERN, 1997. URL: https://cds.
    cern.ch/record/349375.
    [43] The CMS hadron calorimeter project: Technical Design Report. Technical De-
    sign Report CMS. Geneva: CERN, 1997. URL: http://cds.cern.ch/
    record/357153.
    [44] The CMS muon project: Technical Design Report. Technical Design Report
    CMS. Geneva: CERN, 1997. URL: https://cds.cern.ch/record/
    343814.
    [45] CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems.
    Technical Design Report CMS. URL: http://cds.cern.ch/record/
    706847.
    [46] CMS Collaboration. CMS software. https://github.com/cms-sw.
    [47] Sergio Cittolin, Attila Rácz, and Paris Sphicas. CMS The TriDAS Project:
    Technical Design Report, Volume 2: Data Acquisition and High-Level Trig-
    ger. CMS trigger and data-acquisition project. Technical Design Report CMS.
    Geneva: CERN, 2002. URL: http://cds.cern.ch/record/578006.
    [48] Andreas Hoecker et al. “TMVA: Toolkit for Multivariate Data Analysis”.
    In: PoS ACAT (2007), p. 040. arXiv: physics/0703039.
    [49] CMS Collaboration. “Search for the standard model Higgs boson decaying
    into two photons in pp collisions at sqrt(s)=7 TeV”. In: (2012). DOI: 10.
    1016/j.physletb.2012.03.003. eprint: arXiv:1202.1487.
    [50] CMS Collaboration. “Performance of photon reconstruction and identi-
    fication with the CMS detector in proton-proton collisions at sqrt(s) = 8
    TeV”. In: (2015). DOI: 10.1088/1748-0221/10/08/P08010. eprint:
    arXiv:1502.02702.
    [51] CMS Collaboration. GBRlikelihood package. https://github.com/cms-
    egamma/HiggsAnalysis/tree/master/GBRLikelihood.
    [52] E. Norrbin and T. Sjöstrand. “Production and Hadronization of Heavy
    Quarks”. In: (2000). DOI: 10 . 1007 / s100520000460. eprint: arXiv :
    hep-ph/0005110.
    [53] Identification of b quark jets at the CMS Experiment in the LHC Run 2. Tech.
    rep. CMS-PAS-BTV-15-001. Geneva: CERN, 2016. URL: https://cds.
    cern.ch/record/2138504.
    [54] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti- k t jet clus-
    tering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063.
    URL: http://stacks.iop.org/1126-6708/2008/i=04/a=063.
    [55] The CMS Collaboration. “Measurement of B anti-B Angular Correlations
    based on Secondary Vertex Reconstruction at sqrt(s)=7 TeV”. In: (2011).
    DOI: 10.1007/JHEP03(2011)136. eprint: arXiv:1102.3194.
    [56] CMS Collaboration. MVA Framework Offline Guide. https : / / twiki .
    cern.ch/twiki/bin/view/CMSPublic/SWGuideMVAFramework.
    [57] “Heavy flavor identification at CMS with deep neural networks”. In:
    (2017). URL: http://cds.cern.ch/record/2255736.
    [58] Search for the standard model Higgs boson produced through vector boson fusion
    and decaying to bb with proton-proton collisions at sqrt(s) = 13 TeV. Tech. rep.
    CMS-PAS-HIG-16-003. Geneva: CERN, 2016. URL: https://cds.cern.
    ch/record/2160154.
    [59] CMS Collaboration. “Search for the standard model Higgs boson pro-
    duced in association with a W or a Z boson and decaying to bottom
    quarks”. In: (2013). DOI: 10 . 1103 / PhysRevD . 89 . 012003. eprint:
    arXiv:1310.3687.
    [60] Jet algorithms performance in 13 TeV data. Tech. rep. CMS-PAS-JME-16-003.
    Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2256875.
    [61] Pileup Jet Identification. Tech. rep. CMS-PAS-JME-13-005. Geneva: CERN,
    2013. URL: https://cds.cern.ch/record/1581583.
    [62] CMS Collaboration. Measurements of Higgs boson properties in the diphoton
    decay channel in proton-proton collisions at

    s = 13 TeV. 2018. eprint: arXiv:
    1804.02716.
    [63] J. Alwall et al. “The automated computation of tree-level and next-to-
    leading order differential cross sections, and their matching to parton
    shower simulations”. In: (2014). DOI: 10 . 1007 / JHEP07(2014 ) 079.
    eprint: arXiv:1405.0301.
    [64] Benoit Hespel, David Lopez-Val, and Eleni Vryonidou. “Higgs pair pro-
    duction via gluon fusion in the Two-Higgs-Doublet Model”. In: (2014).
    DOI: 10.1007/JHEP09(2014)124. eprint: arXiv:1407.0281.
    [65] Andy Buckley et al. “LHAPDF6: parton density access in the LHC pre-
    cision era”. In: (2014). DOI: 10.1140/epjc/s10052- 015- 3318- 8.
    eprint: arXiv:1412.7420.
    [66] Stefano Carrazza et al. A compression algorithm for the combination of PDF
    sets. 2015. eprint: arXiv:1504.06469.
    [67] Jon Butterworth et al. “PDF4LHC recommendations for LHC Run II”. In:
    (2015). DOI: 10 . 1088 / 0954 - 3899 / 43 / 2 / 023001. eprint: arXiv :
    1510.03865.
    [68] Sayipjamal Dulat et al. “New parton distribution functions from a global
    analysis of quantum chromodynamics”. In: (2015). DOI: 10 . 1103 /
    PhysRevD.93.033006. eprint: arXiv:1506.07443.
    [69] L. A. Harland-Lang et al. “Parton distributions in the LHC era: MMHT
    2014 PDFs”. In: (2014). DOI: 10.1140/epjc/s10052- 015- 3397- 6.
    eprint: arXiv:1412.3989.
    [70] The NNPDF Collaboration et al. “Parton distributions for the LHC Run
    II”. In: (2014). DOI: 10.1007/JHEP04(2015)040. eprint: arXiv:1410.
    8849.
    [71] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2”. In: (2014). DOI:
    10.1016/j.cpc.2015.01.024. eprint: arXiv:1410.3012.
    [72] CMS Collaboration. “Event generator tunes obtained from underlying
    event and multiparton scattering measurements”. In: (2015). DOI: 10 .
    1140/epjc/s10052-016-3988-x. eprint: arXiv:1512.00815.
    [73] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments
    and Methods in Physics Research Section A: Accelerators, Spectrometers, De-
    tectors and Associated Equipment 506.3 (2003), 250–303. DOI: 10 . 1016 /
    s0168-9002(03)01368-8.
    [74] https://github.com/syuvivida/DibosonBSMSignal_13TeV.
    [75] Alexandra Carvalho et al. On the reinterpretation of non-resonant searches for
    Higgs boson pairs. 2017. eprint: arXiv:1710.08261.
    [76] Daniel Faeh and Nicolas Greiner. “Diphoton production in association
    with two bottom jets”. In: (2017). DOI: 10.1140/epjc/s10052-017-
    5296-5. eprint: arXiv:1706.08309.
    [77] Paolo Nason. “A New Method for Combining NLO QCD with Shower
    Monte Carlo Algorithms”. In: (2004). DOI: 10.1088/1126-6708/2004/
    11/040. eprint: arXiv:hep-ph/0409146.
    [78] Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD
    computations with Parton Shower simulations: the POWHEG method”.
    In: (2007). DOI: 10.1088/1126-6708/2007/11/070. eprint: arXiv:
    0709.2092.
    [79] Simone Alioli et al. “A general framework for implementing NLO calcu-
    lations in shower Monte Carlo programs: the POWHEG BOX”. In: (2010).
    DOI: 10.1007/JHEP06(2010)043. eprint: arXiv:1002.2581.
    [80] E. Bagnaschi et al. “Higgs production via gluon fusion in the POWHEG
    approach in the SM and in the MSSM”. In: (2011). DOI: 10 . 1007 /
    JHEP02(2012)088. eprint: arXiv:1111.2854.
    [81] CMS Collaboration. “Particle-flow reconstruction and global event de-
    scription with the CMS detector”. In: (2017). DOI: 10.1088/1748-0221/
    12/10/P10003. eprint: arXiv:1706.04965.
    [82] CMS Collaboration. “Determination of Jet Energy Calibration and Trans-
    verse Momentum Resolution in CMS”. In: (2011). DOI: 10.1088/1748-
    0221/6/11/P11002. eprint: arXiv:1107.4277.
    [83] Nilanjana Kumar and Stephen P. Martin. “LHC search for di-Higgs de-
    cays of stoponium and other scalars in events with two photons and two
    bottom jets”. In: (2014). DOI: 10.1103/PhysRevD.90.055007. eprint:
    arXiv:1404.0996.
    [84] CMS Luminosity Measurements for the 2016 Data Taking Period. Tech. rep.
    CMS-PAS-LUM-17-001. Geneva: CERN, 2017. URL: https : / / cds .
    cern.ch/record/2257069.
    [85] CMS Collaboration. “Observation of the diphoton decay of the Higgs bo-
    son and measurement of its properties”. In: (2014). DOI: 10.1140/epjc/
    s10052-014-3076-z. eprint: arXiv:1407.0558.
    [86] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new
    physics”. In: (2010). DOI: 10.1140/epjc/s10052-011-1554-0. eprint:
    arXiv:1007.1727.
    [87] CMS Collaboration. Higgs Analysis Combination tools. https://github.
    com/cms-analysis/HiggsAnalysis-CombinedLimit.

    QR CODE
    :::