跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俊賓
jiun-bin chen
論文名稱: 資料挖掘技術應用於外來入侵植物研究
指導教授: 陳繼藩
Chi-Farn Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 決策樹CART資料挖掘銀合歡
外文關鍵詞: decision tree, CART, data mining, Leucaena leucocephala
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣屬於海島型國家,海洋是天然屏障,種子除了經由海漂及藉由鳥類及人類攜帶之外,外來植物不容易入侵。台灣在經濟活動因素下,於1976年引進原產於中南美洲的銀合歡,後來因經濟效益不佳,加上墾丁國家公園於1984年1月成立後成立後,相關法令規定下,不得任意砍伐植物。造成南台灣的恆春地區銀合歡大量的繁殖,嚴重影響到當地的生態。故需要對銀合歡進行監測,避免生態再度遭受破壞。
    本研究採用資料挖掘技術中CART決策樹演算法,利用其由上而下,一層層的往下將資料分類的特性,在土地利用圖、道路環域圖、DTM、坡度圖、土壤pH值分佈圖、坡向圖、土地利用類別環域圖、衛星影像與NDVI等空間資料中,挖掘出隱藏在空間資料與光譜資料中銀合歡分佈規則,進而可以預測恆春地區銀合歡分佈的區域。
    本研究利用三種不同的實驗測試,分別為不同銀合歡密度等級與不同訓練區數量、並測試雜訊之影響及加入SPOT多光譜影像,探討不同因素對於預測結果的影響。實驗測試結果精確度都有80%左右,顯示資料挖掘技術結合空間資料,可以有效與快速的找出恆春地區銀合歡的分佈範圍。


    The Ocean is natural barrier in Taiwan Island, so external plants invade uneasily except drift, bird and carriage by human. Because of economical activities, Taiwan import in 1976 Leucaena leucocephala yielded in South American
    Afterwards, low economical benefits as well as related lows which forbid cutting down plants randomly after establishing Kenting National park make Leucaena leucocephala in Heng-Chung area of southern Taiwan proliferate and then affect seriously the local ecology so that Leucaena leucocephala need monitor in order not to be damaged again.
    In the research, the concept of Data Mining can explore information and knowledge in data which includes ground truth in 1996, buffer map of land use, buffer map of road, aspect, buffer map of land use, satellite image and NDVI. With CART, the research attempt to explore the distributions of Leucaena leucocephala and the rules of data, so as to forecast the range of distribution of Leucaena leucocephala of Heng-Chung area.
    Three experimental tests include different Leucaena leucocephala dense level and amount of training set, noise reductions and SPOT images in order to explore the effects of prediction. The accuracy of experimental tests is about 80 percent. Therefore, CART can detect effectively the range of Leucaena leucocephala.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VI 表目錄 VIII 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究流程 5 1.5 文章架構 6 第二章 文獻回顧 7 2.1銀合歡基本特性 7 2.2銀合歡擴散因素 8 2.3銀合歡容易入侵的土地利用類型 11 2.4資料挖掘之應用範圍 15 第三章 研究方法 18 3.1資料挖掘(Data Mining) 18 3.1.1資料挖掘之定義 18 3.1.2 資料挖掘步驟 19 3.1.3 資料挖掘模式 20 3.2研究方法 21 第四章 研究資料與研究流程 36 4.1 研究區概況 37 4.2 研究資料 38 4.2.1 地表真值 39 4.2.2空間資料 42 4.2.3空間運算資料 47 4.2.4光譜資料 55 4.3研究流程 57 第五章 測試與討論 63 第六章 結論與建議 105 參考文獻 107 附錄一 110

    王秀雯,2004。應用資料挖掘技術於交通事故傷亡嚴重程度之研究,嘉義大學,運輸與物流工程研究所碩士論文
    白梅玲、李培芬、張琪如. 2000. 福山試驗林之景觀分類. 中華林學季刊 33(3):291-312
    李培芬,2004。台灣的自然資源與生態資料庫-生物多樣性,台灣大學 生物多樣性研究中心。
    呂福原 、陳民安,2002。 墾丁國家公園外來種植物對原生植群之影響 以銀合歡為例,保育研究報告第112號。
    陳朝圳,2003。劣化生態系復育-外來樹種入侵對生態系之影響(銀合歡入侵調查),行政院農委會林務局委託研究計畫系列。
    陳宏銘,2001。 設計最佳化之演化式模糊決策樹, 逢甲大學,資訊工程研究所碩士論文
    賴明洲,1995。最新台灣園林觀賞植物名錄。地景企業股份有限公司 台灣台北 378頁
    颺如思,2004。綠色之癌──外來入侵植物,台灣環境資訊協會專欄報導
    Apte.C ,Sholom Weiss,1997,Data mining with decision trees and decision rules,Future Generation Computer System,pp.197-210
    Feng.Qi ,A-X.Zhu ,2003, Knowledge discovery form soil maps using inductive learning , International Journal of Geographical Information Science ,Vol.17, No.8, pp.771-795
    Han, Jiawei and Micheline Kamber (2001), Data Mining : Concepts and Techniques, John Wiley & Son.
    Jourdan.L ,C.Dhaenens,E-G.Talbi,S.Gallins,2002,A data mining approach to discover genetic and environmental factors involed in multifactorial diseases,knowledge Base System,pp.235-242
    Kuhnert.P.M ,Do.K.A ,McClure.R,2000,Combining non-parametric models with logistic regression :an application to motor vehicle injury data ,Computational Statistics & Data Analysis,34(3),pp.371-386.
    L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees(The Wadsworth Statistics/Probability Series). Belmont, CA: Wadsworth, 1984.
    Li Deren ,k.DI,D.LI,2000,Land use classification of remote sensing image with gis data base on spatial data mining techniques,Internation Society for Photogrammetry and Remote Sensing 0256-1840
    M.Ester,S.Gundlach,H.p.Kriegel,and J.Sander,2000,Spatial Data Mining,Database Primitives,Algorithms and Efficient DBMS Support,Data Mining and Knowledge Discover,Vol.4,pp.193-216
    Margaret H.Dunham,2003,Data mining introductory and advanced topics,Pearson Education,Inc.
    Nadjim C., K. Zeitouni and A. Boulmakoul, 2002. An decision tree for multi-layered spatial data. In Proceeding of 2002 International Symposium on Geospatial Theory, Processing and Application, Ottawa , Canada.
    Qiang Ding, Qin Ding,and W.Perrizo,2002,Decision Tree Classification of Spatial Data Streams Using Peano Count Trees, Proceeding of ACM Symposium on Applied Computing , Madrid,Spain,pp.413-417
    Shashi S., C.T. Lu, P. Zhang, and R. Liu, 2002, Data mining for selective visualization of large spatial datasets’, Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, pp.41 - 48
    Shashi S., C.T. Lu, S. Chawla, P. Zhang, 2001, Data Mining and Visualization of Twin-Cities Traffic Data, Dept. of Computer Science Technical Report TR 01-15, U. of Minnesota .

    QR CODE
    :::