| 研究生: |
周冠廷 Guan-ting Zhou |
|---|---|
| 論文名稱: |
利用磁性奈米探針與基質輔助雷射脫附/游離飛行時間質譜儀進行人類血液中前列腺特異抗原的定量 Quantification of Prostate-Specific Antigen in Human Plasma by Using Magnetic Nanoprobe and MALDI-TOF MS |
| 指導教授: |
陳玉如
Yu-ju Chen 王家麟 Jia-Lin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 前列腺特異抗原 、奈米探針 |
| 外文關鍵詞: | Magnetic Nanoprobe, Prostate-Specific Antigen |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前列腺(攝護腺)癌是目前醫學上很常見的一種癌症。在世界衛生組織(World Health Organization, WHO)2009年的報導中指出,前列腺癌是全球十大癌症當中排名第六名的癌症。在前列腺癌的臨床診斷上,前列腺特異抗原(prostate-specific antigen, PSA)濃度檢測是目前最廣泛使用的方法。當血清中的前列腺特異抗原濃度超過4毫微克/毫升時,即可視為前列癌的高度危險群。
在本篇論文中,我們應用本實驗室所開發的奈米探針輔助親和性質譜法(nanoprobe-based affinity mass spectrometry, NBAMS)做為前列腺特異抗原的免疫測定方法。利用表面結合有前列腺特異抗原抗體的磁性奈米粒子,藉由抗體對抗原的高專一性作用力,做為濃縮血清中前列腺特異抗原的親合性探針,再結合具有高靈敏度的基質輔助雷射脫附/游離飛行時間質譜儀針對含量極低且不易游離的高度醣化前列腺特異抗原樣品進行定量偵測。實驗結果顯示,此分析方法可以在人體血清中,偵測低至5毫微克/毫升的前列腺特異抗原。另一方面,藉由內標準品的添加以及使用晶種層樣品配製法(seed-layer method) 改善樣品訊號的變動,我們可以於血清環境中,對於5-100毫微克的前列腺特異抗原建立相關系數高於0.99的工作曲線。最後,我們證明了本實驗方法可以應用於血清環境中,並對前列腺癌以及前列腺良性增生的病人樣本進行分析。
Prostate cancer is the NO.6 cancer cause of death among men in global reported by World Health Organization (WHO) in 2009. The serum level of prostate-specific antigen (PSA) has been widely used for the clinical diagnosis of prostate cancer; abundance of PSA above 4 ng/ml indicates the high probability of prostate cancer.
In this study, we implemented our previously developed nanoprobe-based affinity mass spectrometry (NBAMS) as an immunoassay for PSA quantification in human plasma. Based on the specificity of antibody-antigen interaction, anti-PSA antibody-conjugated magnetic nanoparticles (anti-PSA@MNPs) can be used as an affinity probe to extract and enrich PSA from human plasma, followed by quantification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The challenge in this study is the low abundance of PSA in human serum and the low ionization efficiency of the highly glycosylated PSA. Our results showed the limit of detection (LOD) of 5 ng/ml in diluted human plasma. To facilitate quantification of PSA, we integrated the use of internal standard and seed-layer method; the latter improved homogeneous crystallization of sample and matrix to reduce signal fluctuation. The standard working curve constructed by standard PSA spiked in plasma showed dynamic range from 5-100 ng with correlation coefficients better than 0.99. Finally, we demonstrated that this method can be used to analyze plasma sample from patients with prostate cancer and benign prostatic hyperplasia patient.
[1] Lequin, R. M., Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry 2005, 51, 2415-2418.
[2] Loo, J. A.; Udseth, H. R.; and Richard D. Smith, R. D., Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Analytical Biochemistry 1989, 179, 404-412.
[3] Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60, 2299-2301.
[4] Xu, Y.; Bruening, M. L.; Watson, J. T. Non-specific, on-probe cleanup methods for MALDI-MS samples. Mass Spectrometry Reviews 2003, 22, 429– 440.
[5] Gilar, M.; Bouvier, E. S. P., Compton, Bruce J. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods. Journal of Chromatography A, 2001, 909, 111–135.
[6] Tang, N.; Tornatore, P.; Weinberger, S. R. Current developments in SELDI affinity technology. Mass Spectrometry Reviews, 2004, 23, 34–44.
[7] Papac, D. I.; Hoyes, J.; Tomer, K. B. Direct Analysis of Affinity-Bound Analytes by MALDI/TOF MS. Analytical Chemistry 1994, 66, 2609-2613.
[8] Jaina, V.; Deepti Saini, D.; Goswamia, P.; Sinha, S., A phage antibody to the active site of human placental alkaline phosphatase with higher affinity to the enzyme–substrate complex. Molecular Immunology 2007, 44, 369-376.
[9] Bundy, J.; Fenselau, C. Lectin-Based Affinity Capture for MALDI-MS Analysis of Bacteria. Analytical Chemistry 1999, 71, 1460-1463.
[10] Bundy, J. L.; Fenselau, C. Lectin and Carbohydrate Affinity Capture Surfaces for Mass Spectrometric Analysis of Microorganisms. Analytical Chemistry 2001, 73, 751-757.
[11] Olmsted, J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. Journal of Biological Chemistry 1981, 256, 11955-11957.
[12] Brockman, A. H.; Orlando, R. Probe-Immobilized Affinity Chromatography/Mass Spectrometry. Analytical Chemistry 1995, 67, 4581 -4585.
[13] Brockman, A. H.; Orlando, R. New Immobilization Chemistry for Probe Affinity Mass Spectrometry, Rapid Communications In Mass Spectrometry 1996, 10,1688-1692
[14] Liang, X.; Lubman, D. M. On-Probe Immunoaffinity Extraction by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Analytical Chemistry 1998, 70, 498-503
[15] Lopez, M. F.; Rezai, T.; Sarracino, D. A.; Prakash, A.; Krastins, B.; Athanas, M.; Singh, R. J.; Barnidge, D. R.; Oran, P.; Borges, C.; Nelson, R. W.,Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clinical Chemistry 2010, 56, 281–290.
[16] Hutchens, T. W.; Yip, T. T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Communications In Mass Spectrometry, 1993, 7, 576-580
[17] Katz, J. E.; Mallick, P.; Agus, D. B. A perspective on protein profiling of blood. British Journal of Urology International 2005, 96, 477-482.
[18] Rosenblatt, K. P.; Bryant-Greenwood, P.; Killian, J. K.; Mehta, A.; Geho, D.; Espina, V.; III, E. F. P.; Liotta, L. A., Serum proteomics in cancer diagnosis and management. Annual Review of Medicine 2004, 55, 97-112.
[19] Issaq, H. J.; Conrads, T. P.; Prieto, D. A.; Tirumalai, R.; Veenstra, T. D., SELDI-TOF MS for diagnostic proteomics. Analytical Chemistry 2003, 149A-155A.
[20] Diamandis, E. P., Mass spectrometry as a diagnostic and a cancer biomarker discovery tool. Molecular & Cellular Proteomics 2004, 3, 367-378.
[21] Henderson, N. A.; Steele, R. J. C., SELDI-TOF proteomic analysis and cancer detection. Surgeon 2005, 1, 383-390.
[22] Jr, B. C. V.; Bonventre, J. V.; Hsu, S. I.-H., Towards the application of proteomics in real disease diagnosis. Clinical Science 2005, 109, 421-430.
[23] Zhu, W.; Wang, X.; Ma, Y.; Rao, M.; Glimm, J.; Kovach, J. S. Detection of cancer-specific markers amid massive mass spectral data. Proceedings of the National Academy of Sciences 2003, 100, 14666-14671
[24] Johann DJ Jr, McGuigan MD, Patel AR, Tomov S, Ross S, Conrads TP, Veenstra TD, Fishman DA, Whiteley GR, Petricoin EF 3rd, Liotta LA. Clinical proteomics and biomarker discovery. Annals of the New York Academy of Sciences. 2004,1022, 295-305
[25] Guo, J.; Yang, E. C.; Desouza, L.; Diehl, G.; Rodrigues, M.J.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W. A strategy for high-resolution protein identification in
[26] Moore, A., Brave small word. European Molecular Biology Organization 2001, 2, 86-88.
[27] Zhang, C.; Zhang, Z.; Yu, B.; Shi, J.; Zhang, X., Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Analytical Chemistry 2002, 74, 96-99.
[28] Ho, K.-C.; Tsai, P.-J.; Lin, Y.-S.; Chen, Y.-C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Analytical Chemistry 2004, 76, 7162-7168.
[29] Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L., A whole blood
immunoassay using gold nanoshells. Analytical Chemistry 2003, 75, 2377-2381.
[30] Bucak, S.; Jones, D. A.; Laibinis, P. E.; Hatton, T. A., Protein separation using colloidal magnetic nanoparticles. Biotechnology Progress 2003, 19, 477-484.
[31] Gu, H.; Ho, P.-L.; Tsang, K. W. T.; Wang, L.; Xu, B., Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration. Journal of the American Chemical Society 2003, 125, 15702-15703.
[32] Lin, Y.-S.; Tsai, P.-J.; Weng, M.-F.; Chen, Y.-C., Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Analytical Chemistry 2005, 77, 1753-1760.
[33] Kriz, K.; Ibraimi, F.; Lu, M.; Hansson, L.-O.; Kriz, D., Detection of C-reactive protein utilizing magnetic permeability detection based immunoassay. Analytical Chemistry 2005, 77, 5920-5924.
[34] Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A. C.-Y.; Chen, J.-H.; Lin, C.-C.; Chen, Y.-J., Nanoprobe-bsed affinity mass spectrometry for selected protein profiling in human plasma. Analytical Chemistry 2005, 77, 5990-5997.
[35] Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C. Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma. Small 2006, 2, 485–489.
[36] Chen, S. H.; Liao, H. K.; Chang, C. Y.; Juo, C. G.; Chen, J. H.; Chan, S. I.; Chen, Y. J. Targeted protein quantitation and profiling using PVDF affinity probe and MALDI-TOF MS. Proteomics 2007, 7, 3038–3050.
[37] Atkinson, A. J.; Colburn, W. A.; DeGruttola, V. G.; DeMets, D. L.; Downing, G. J.; Hoth, D. F.; Oates, J. A.; Peck, C. C.; Schooley, R. T.; Spilker, B. A.; Woodcock, J.; Zeger, S. L., Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics 2001, 69, 89–95.
[38] Moertel, C. G.; Fleming, T. R.; Macdonald, J. S.; Haller, D. G.; Laurie, J. A.; Tangen, C., An Evaluation of the Carcinoembryonic Antigen (CEA) Test for Monitoring Patients With Resected Colon Cancer. Journal of The American Medical Association 1993, 270, 943-947.
[39] Goldenberg, D.M.; Kim, E.E.; DeLand, F.H.; Bennett, S.; Primus, F. j. Radioimmunodetection of Cancer with Radioactive Antibodies to Carcinoembryonic Antigen. Cancer Researchearch 1980, 40, 2984-2992
[40] Leonard, D. S.; Hill, A. D. K.; Kelly, L.; Dijkstra, B.; McDermott, E.; O''Higgins, N. J., Anti-human epidermal growth factor receptor 2 monoclonal antibody therapy for breast cancer. British Journal of Surgery 2002, 89, 262-271.
[41] Konety, B. R.; Nguyen, T. T. -S.; Dhir, R.; Day, R. S.; Becich, M. J.; Stadler, W. M.; Getzenberg, R. H., Detection of Bladder Cancer Using a Novel Nuclear Matrix Protein,BLCA-4. Clinical Cancer Researchearch 2000, 6, 2618–2625.
[42] Ludwig, J. A.; Weinstein, J. N., Biomarkers in Cancer Staging, Prognosis And Treatment Selection. Nature Reviews Cancer 2005, 5, 845-856.
surface-enhanced laser desorption/ionization mass spectrometry: calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. Proteomics 2005, 5, 1953–1966
[43] LaBaer. J., So, You Want to Look for Biomarkers (Introduction to the Special Biomarkers Issue). Journal of Proteome Research 2005, 4, 1053-1059.
[44] Lilja, H. A Kallikrein-like serine protease in prostatic fluid cleaves the
predominant seminal vesicle protein. Journal of Clinical Investigation 1985, 76, 1899–903
[45] Sa¨vblom, C.; Malm, J.; Giwercman, A.; Nilsson, J.; Berglund, G.; Lilja, H. Blood levels of free-PSA but not complex-PSA significantly correlates to prostate release of PSA in semen in young men, while blood levels of complex-PSA, but not free-PSA increase with age. Prostate 2005, 65, 66–72
[46] Stamey, T.A.; Yang, N.; Hay A.R. McNeal, J.E.; Freiha, F.S.; Redwine, E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. New England Journal of Medicine 1987, 317, 909–16
[47] Gann, P. H.; Hennekens, C. H.; Stampfer, M. J. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. Journal of The American Medical Association 1995, 273 (4), 289–94
[48] Stenman, U.H.; Leinonen, J.; Alfthan, H.; Ranniko, S.; Tuhkanen, K.; Alfthan, O. A complex between prostate-specific antigen and a1-antichymotrypsin is the major form of prostatic-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Research 1991, 51, 222–226.
[49] Lilja, H.; Christensson, A.; Dahlen, U.; Matikainen, M.T.; Nilsson, O.; Pettersson, K.; Lo¨vgren, T. Prostate-specific antigen in human serum occurs predominantly in complex with a1-antichymotrypsin. Clinical Chemistry 1991, 37, 1618–1627.
[50] Zhang, W. M.; Finne, P.; Leinonen, J.; Vesalainen, S.; Nordling, S.; Rannikko, S.; Stenman, U. H. Characterization and immunological determination of the complex between prostate-specific antigen and a2-macroglobulin. Clinical Chemistry 1998, 44, 2471–2479.
[51] Catalona, W. J.; Partin, A. W.; Slawin, K. M.; Brawer, M. K.; Flanigan, R. C.; Patel, A.; Richie, J. P.; deKernion, J. B.; Walsh, P. C.; Scardino, P. T.; Lange, P. H.; Subong, E. N. P.; Parson, R. E.; Gasior, G. H.; Loveland, K. G.; Southwick, P. C. Use of the Percentage of Free Prostate-Specific Antigen to Enhance Differentiation of Prostate Cancer From Benign Prostatic Disease: A Prospective Multicenter Clinical Trial. Journal of The American Medical Association 1998, 279, 1542-1547.
[52] Ohyama, C.; Hosono, M.; Nitta, K.; Oh-eda, M.; Yoshikawa, K.; Habuchi,T.; Arai,Y.; Fukuda, M., Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 2004, 14, 671–679
[53] Mikolajczyk, S. D.; Millar, L. S.; Wang, T. J.; Rittenhouse, H. G.; Marks, L. S.; Song, W.; Wheeler, T. M.; Slawin, K. M. A Precursor Form of Prostate-specific Antigen Is More Highly Elevated in Prostate Cancer Compared with Benign Transition Zone Prostate Tissue. Clinical Chemistry 2004, 50, 1017–1025.
[54] Peter, J.; Unverzagt, C.; Hoesel, W. Release of Free PSA from the PSA-ACT Complex. Clinical Chemistry 2000, 46(4), 474–482.
[55] Jacobs, J. M.; Adkins, J. N.; Qian, W.; Liu, T.; Shen,Y.; Camp, D.G.; and Smith, R.D. Utilizing Human Blood Plasma for Proteomic Biomarker Discovery. Journal of Proteome Research 2005, 4, 1073-1085.
[56] Jin, Y.; Manabe, T. Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry. Electrophoresis 2005, 26, 2823-2834.
[57] Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D., Characteriz Characterization of the Low Molecular Weight Human Serum Proteome. Molecular & Cellular Proteomics 2003, 2, 1096-1103.
[58] Schweitzer, B.; Kingsmore, S. F. Measuring proteins on microarrays. Current Opinion in Biotechnology 2002, 13, 14–19.
[59] Davies, D. R.; Padlan, E. A. Antibody -antigen complexes. Annual Review of Biochemistry 1990, 59, 439-73.
[60] Onnerfjord, P.; Ekstrom, S.; Bergquist, J.; Nilsson, J.; Laurell, T.; Marko-Varga, G., Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Journal of Mass Spectrometry 1999, 13, 315–322.
[61] van Kampen, J. J.; Burgers, P. C.; de Groot, R.; Luider, T. M., Qualitative and Quantitative Analysis of Pharmaceutical Compounds by MALDI-TOF Mass Spectrometry. Analytical Chemistry 2006, 78, 5403–5411.
[62] Phizicky, E.; Bastiaens, P. I. H.; Zhu, H.; Snyder, M.; Fields, S. Protein analysis on a proteomic scale. Nature 2003, 422, 208-215.
[63] Guidance for industry: Q2B Validation of Analytical Procedure, Methodology. http//www.fda.gov