跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡明君
Ming-jyun Cai
論文名稱: 聯立方程式與單變量ARIMA模式之應用-以高雄港貨櫃量預測為例
The application of Simultaneous equations and univariate ARIMA model-forecasting of the container volume for Kaohsiung Port
指導教授: 謝浩明
How-ming Shieh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 出口貨櫃量預測轉口貨櫃量聯立方程式ARIMA模型進口貨櫃量
外文關鍵詞: forecasting, simultaneous equations models, transited containers, export containers, import containers, ARIMA models
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為建構高雄港進出轉口貨櫃量的預測模式。實務發現進口貨櫃量為國內經濟活動的衍生性運輸需求,出口貨櫃量為國內與貿易國之經濟活動的衍生性需求。而國內經濟活動與貿易國經濟活動間彼此乃是息息相關,因此進口貨櫃量與出口貨櫃量間亦為彼此相互影響之聯立關係。轉口貨櫃量受航商運輸行為改變、大型化貨櫃船趨勢和子母船運輸方式盛行的影響。基於大型化貨櫃船的運量需求,貨櫃母船靠泊於貨櫃量運輸需求大的港埠,鄰近地區的貨櫃量運輸需求則先於集貨港進行集貨動作,再利用子船前往裝載回母船靠泊港,以完成整體運輸行為。隨著大陸地區內需力量的激增,龐大的貨櫃量需求吸引下,航商逐漸將運輸路線轉移至大陸地區深水港埠,我國進出口貨櫃量之需求雖不及大陸地區,但對航商而言仍是可觀的貨櫃量需求,加上高雄港擁有較佳的港埠裝卸效率、進出港船舶艘次的頻率頻繁及港埠相關營運政策有利於航商等因素吸引下,均有利於高雄港爭取區域內集貨港的地位,故轉口貨櫃量受進出口貨櫃量之影響,形成進出轉口貨櫃量三者的聯立關係。港埠運量預測ㄧ直以來皆為港埠投資計畫中重要的環節,準確的港埠運量預測能有效的幫助營運當局掌握未來貨櫃量之需求,進而擬訂最適的投資計畫,減少不必要的國家建設開支浪費。本研究利用進出轉口貨櫃量三者的聯立關係,以歷史資料建構出進出轉口貨櫃量彼此聯立影響行為之模型,再利用ARIMA模型產生外生變數預測值,最後將外生變數預測值代回聯立模型內,以求得進出轉口貨櫃量預測值。研究結果發現,影響進口貨櫃量之顯著變數為出口貨櫃量,影響出口貨櫃量之顯著變數為進口貨櫃量和香港工業生產指數。影響轉口貨櫃量之顯著變數為出口貨櫃量、境外轉運中心貨櫃量、平均在港停泊時間及平均進出港船舶艘次。最後加入海西經濟特區及台北港加入營運後之實務討論,修正研究所得之高雄港貨櫃量之預測值。


    The main purpose of this research is to build a forecasting model for the container throughput (import/export/transshipment) of Kaohsiung Port. Practice shows that import container volume is a derivative transportation demand which is related to domestic economic activity while export container volume reflects the derivative demand of economic activity between Taiwan and other trading countries. Domestic economy is closely connected to other trading countries, so import container volume and export container volume influence each other in a mutual and simultaneous way. The volume of Transshipment container is effected by the transportation behavior change of container carriers, large-scale trend for container ships and flourishing of lighter aboard ships; in response to the freight volume demand of large-scale container ships, that is, mother vessels berth alongside ports with bigger container traffic demands. For the container traffic demands in neighboring areas, first consolidating in feeder ports, then utilizing barges to transport the goods to the ports where mother vessels are berthing, hence, to complete the entire transportation. As the surge of China’s domestic demand, attracted by the tremendous demand for containers, the shipping companies gradually relocate the ship routes to deep-water ports in China; Taiwan’s import/export container demand is not as big as that of mainland China, but for shipping companies, it is still a considerable demand. Furthermore, considering the factors that Kaohsiung Port is more efficient in loading and unloading, has frequent incoming and outgoing ships and port related policies favor shipping companies, all of these are beneficial for Kaohsiung to win the position as top regional feeder port. Thus, the transshipment container volume is affected by import and export container volumes and forms simultaneous relationship among import, export and transshipment container volume. The forecasting of port traffic has always been an important factor in port investment plan and exact port traffic forecasting can effectively help port operators to know future container demands, hence, designing the most suitable investment plan can reduce unnecessary national construction expenses. This research utilizes the simultaneous relationship among import, export and transshipment container volumes and builds a simultaneous influence behavior model of import, export and transshipment with historical data. Using ARIMA model to gain estimated exogenous variables and substituting estimated exogenous variables in simultaneous equation to gain the forecasted value of container throughputs. The research shows that the significant variable for import container volume is the export container volume; the significant variables for export container volume are import container quantity and index of industrial production in Hong Kong. The significant variables for transshipment container volumes are export container traffic, container volume in offshore transshipment center, average berthing time and the average number of incoming and outgoing ships. Finally, adding Special Economic Zone Taiwan Strait West bank as well as Taipei port operation into the empirical discussion, and modifying the estimated value of container traffic in Kaohsiung Port calculated in this research.

    摘要 i Abstract ii 致謝 iv 目錄 vi 圖目錄 xiv 表目錄 xvii 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 3 1-3 研究目的與範圍 5 1-4 研究步驟與流程 5 第二章 文獻回顧 8 2-1 預測方法概論 8 2-2 國內外港埠運量預測模式 11 2-2-1 國內港埠運量預測模式相關文獻 11 2-2-2 國外港埠運量預測模式相關文獻 16 2-3 港埠貨櫃量及港埠效率之影響因素探討 17 2-3-1 國內外進出口貨櫃量之影響變數相關文獻 17 2-3-2 轉口貨櫃量之影響變數相關文獻 19 2-3-3 港埠效率之影響變數相關文獻 20 2-4 時間序列應用在其他領域相關文獻 20 2-5 文獻小結與研究概念 21 第三章 研究方法 26 3-1 聯立方程式 26 3-1-1 聯立性概念 26 3-1-2 變數定義 27 3-1-3 認定問題 31 3-1-4 參數估計問題 32 3-2 時間序列 34 3-2-1 時間序列分析簡介 34 3-2-2 移動平均模型 39 3-2-3 自我迴歸模型 40 3-2-4自我迴歸和移動平均混合模型 44 3-2-5 ARIMA模型 45 3-3 研究架構 47 3-3-1 進出口貨櫃量之影響因素探討與選取 48 3-3-2 轉口貨櫃量之影響因素探討與選取 50 3-3-3 資料蒐集與處理 51 3-3-4 進出轉口貨櫃量之模式建構 53 3-3-5 各內生變數與外生變數的ㄧ次線性關係檢驗 54 第四章 實證分析 56 4-1 聯立方程式模型之參數求解 56 4-1-1 二階段最小平方法 56 4-1-2 三階段最小平方法 59 4-2 各外生變數之ARIMA預測模式 62 4-2-1 台灣工業生產指數 63 4-2-2 台灣國內生產毛額 70 4-2-3 美國工業生產指數 76 4-2-4 日本工業生產指數 81 4-2-5 香港工業生產指數 85 4-2-6 貿易國國內生產毛額 91 4-2-7 境外轉運中心貨櫃量 96 4-2-8 平均在港停泊時間 96 4-2-9 平均進出港船舶艘次 101 4-3 進出轉口貨櫃量之聯立方程式模型預測值 107 4-4 海西經濟特區對高雄港進出轉口貨櫃量之影響探討 111 4-4-1 海西經濟特區介紹 111 4-4-2 海西經濟特區之戰略意義 112 4-4-3 海西經濟特區之發展佈局 112 4-4-4 海西經濟特區對高雄港貨櫃量之影響 112 4-5 台北港加入營運後對高雄港進出轉口貨櫃量之影響探討 113 第五章 結論與建議 117 5-1 結論 117 5-2 建議 119 參考文獻 121

    1. 石齊平和郭照榮,當代計量經濟學,二版,三民書局,台北,民國76年。
    2. Griffiths, Lutkepohl, Judge, Hill, Lee著,計量經濟學理論與應用(上),初版,李順成譯,曉園出版社,台北市,民國78年。
    3. 吳柏林,時間數列分析導論,初版,華泰書局,台北市,民國84年。
    4. 李博志,應用計量經濟學,初版,五南圖書,台北市,民國89年。
    5. Pindyck, Rubinfeld著,經濟預測與計量經濟模型,四版,鄧美貞譯,台灣西書出版社,台北市,民國89年。
    6. 高鐵梅等編著,計量經濟分析方法與建模-EViews應用及實例,四版,清華大學出版社,北京,民國96年。
    7. 劉宏道和張徐錫,「港埠運量預測模式之研究」,中華技術,第17期,89-97頁,民國82年。
    8. 傅世鎰,「臺灣地區港埠進出口貨櫃運量預測模式之研究」,國立交通大學,碩士論文,民國81年。
    9. 高雄港務局「高雄港埠整體開發計畫」,民國82年。
    10. 顏進儒和林永山,「我國海運主要定期航線貨物運量分析」,運輸學刊,第10卷第4期,97-111頁,民國86年。
    11. 基隆港務局,「台北港整體規劃及未來發展計畫」,民國87年。
    12. 交通部運輸研究所港灣技術研究中心,「港埠運量預測之研究」,民國88年。
    13. 朱金元和程玉萍,「臺灣地區港埠進出口貨物運量預測之研究」,航運季刊,第8卷第4期,17-40頁,民國88年。
    14. 周文賢、張隆獻和古金英,「台灣貨櫃運量決定因素及預測之研究」,海運學報,第7期,88-110頁,民國88年。
    15. 魏建宏和楊雨青,「高雄港轉口貨櫃運量預測之研究—以類神經網路評選輸入變數」,運輸學刊,第11卷第3期,1-20頁,民國88年。
    16. 王昭榕,「基隆港貨櫃運輸分析」,國立海洋大學,碩士論文,民國89年。
    17. 交通部運輸研究所港灣技術研究中心,「台灣地區整體國際港埠發展再檢討之研究」,民國89年。
    18. 林錦桂,「台灣地區港埠貨櫃運量預測之研究」,國立海洋大學,碩士論文,民國89年。
    19. 黃宏斌,「高雄港轉口貨櫃運量預測之研究—以類神經網路為預測模型」,國立海洋大學,碩士論文,民國89年。
    20. 周建張,「台灣地區海運貨櫃運量迴歸預測模式之改善研究」,航運季刊,第12卷第1期,27-42頁,民國92年。
    21. 陳靜如,「國內海運進出轉口貨櫃量影響因子之研究」,國立高雄第一科技大學,碩士論文,民國92年。
    22. 交通部運輸研究所和中華顧問工程司,「台灣地區商港整體發展規劃(96~100年)」,民國94年。
    23. 吳榮貴,「亞太貨櫃港口的競爭與發展」,2006航運與港埠發展研討會,民國95年。
    24. 徐人剛,「台北港貨櫃中心之經營策略」,2006航運與港埠發展研討會,民國95年。
    25. 郭英峰和陳邦誠,「以單變量ARIMA模式、類神經網路、灰色GM(1,1)模型預測高雄港貨櫃吞吐量」,台大管理論叢,第17卷第2期,107-132頁,民國96年。
    26. 李志強,「海西經濟區對台灣產業的可能影響」,民國98年。
    27. 戴肇洋,「大陸海西經濟區對台灣之機會與威脅」,民國98年。
    28. 塗維穗和蔣昭弘,「從台北港開港談我國商港與區域整合面臨課題與未來挑戰」,國政研究報告,2009年。
    29. Badcock, M. W., and Lu, X., “Forecasting inland waterway grain traffic,” Transportation Research Part E, Vol.38, pp. 65-74, 2002.
    30. Changkyum and Antoine, “A Short-Term Demand Forecasting Model From Real Time Traffic Data,” Infrastructure Planning and Management, ASCE, 1993.
    31. Chavez, S. G., Bernat, J. X., and Coalla, H. L., “Forecasting of energy production and consumption in Austurias (northern Spain) ,” Energy, Vol. 24, pp. 183-198, 1999.
    32. Cho, V., “Tourism forecasting and its relationship with leading economic indicators,” Journal of Hospitality and Tourism Research, Vol. 25, No. 4, pp. 399-420, 2001.
    33. Clark, X., Dollar, D., and Micco, A., “Port efficency, maritime transport costs, and bilateral trade,” Development Economics, Vol. 75, No. 75, pp. 471-450, 2004.
    34. Chen, S. H., and Chen, J. N., “Forecasting container throughputs at ports using genetic programming,” Expert Systems with Applications, Vol. 37, Issue 3, pp. 2054-2058, 2010.
    35. Delurgio, S. A., Forecasting principles and applications, McGraw-Hill, 1998.
    36. Mehern, J., and Shahrokhi, M., “An Application of Four Foreign Currency Forecasting Models to the U. S. Dollar and Mexican Peso,” Global Finance Journal, Vol. 8, pp. 211-220, 1997.
    37. Peng, W. Y., and Chu, C. W., “A comparison of univariate methods for forecasting container throughput volumes, Mathematical and Computer Modeling,” Vol. 50, pp. 1045-1057, 2009.
    38. Seabrooke, W., Hui, E. C. M., Lam, W. H. K., and Wong, G. K. C., “Forecast ing Cargo Growth and Role of the Port of Hong Kong,” Cities, Vol. 20, No. 3, pp. 51-64, 2003.
    39. Tongzo, J. L., “Determinants of port performance and efficiency,” Transportation Reserch Part A, Vol. 29, No. 3, pp. 245-252, 1995.
    40. Veenstra, A. W., and Haralambides, H. E., “Multivariate Autoregressive Models for Forecasting Seaborne Trade Flows,” Transportation Research Part E, Vol. 37, No. 4, pp. 311-319, 2001.

    QR CODE
    :::