跳到主要內容

簡易檢索 / 詳目顯示

研究生: 巫洸毅
Kuang-Yi Wu
論文名稱: 鉑-鎳雙金屬觸媒結構及電化學活性之研究
Structure and Electrochemical Properties of Bimetallic Pt-Ni Catalysts
指導教授: 姚學麟
Shueh-Lin Yau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 英文
論文頁數: 61
中文關鍵詞: 奈米粒子觸媒燃料電池
外文關鍵詞: nanoparticles, Pt, Ni, catalysts, fuel cell
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以大角度X 光繞射及Debye 函數分析以形成羰基複合物方式合成不同金屬比例的以Vulcan XC-72 碳為載體的鉑-鎳奈米粒子,從大角度X 光繞射及Debye 函數模擬分析結果得知,在經由500℃以上高溫還原後,鉑-鎳合金觸媒具面心立方結構,其晶格常數會隨著鎳金屬比例的增加而降低。而經由較低溫200℃還原形成觸媒則可能是不均勻的奈米粒子,其內部應鉑跟鎳金屬原子團。穿透式電子顯微鏡結果指出鉑-鎳奈米粒子均勻分布在碳載體上,且粒徑分布約為3~4奈米。藉由能量分散光譜儀確認觸媒組成比例與起始反應物比例接近。我們使用薄膜旋轉電極實驗方式研究氧氣還原反應,結果顯示
    鉑-鎳合金的奈米粒子其電化學活性和鉑為基底的觸媒類似。


    Vulcan XC-72 cabon-support Pt-Ni nanoparticle catalysts with different Pt/Ni atomic compositions were prepared via the carbonyl complex route and their structures were studied by X-ray diffraction at wide angles(WAXS) and Debye function analysis (DFA). WAXS pattern and DFA simulation revealed that all the as-prepared
    Pt-Ni alloy catalysts after higher temperature(500℃) treatment have face-centered cubic structure with lattice constants decreasing with the increase of Ni content. Catalysts prepared by heat treatment at 200℃ appeared to be inhomogeneous made of Ni and Pt mono crystallites. Transmission electron microscopy (TEM) images indicated that Pt-Ni nanoparticles were well dispersed on the surface of the carbon support with a narrow
    particle size distribution. Energy-dispersive X-ray analysis (EDX) confirmed that the catalyst compositions were nearly the same as the nominal values. We conducted thin film rotating disk electrode experiments to study the oxygen reduction reaction. Results showed that the electrochemical activity of Pt-Ni alloyed catalysts were nearly the same as that of Pt-based catalysts supported by carbon.

    摘要……...……………………………………….……………………… i Abstract.……………………………………………………….………… ii 謝誌……………………………………………………………………….iii Table of contents…………………………………………………..…….. iv Figure of contents……………………………………………………….. .vi Chapter 1.Introduction……...……………………………………….…1 1.1 Fuel Cells…...………………………………………………………...1 1.2 Characteristics of Fuel Cells…………......……………………….…..2 1.3 Limitations for fuel cell…………….…………………………….......4 1.4 Electrocatalysts used in the Anode and Cathode of Fuel cells………..5 1.5 Applications of Fuel Cells……………………………………………6 1.6 Literature review………………………………………………...……6 Chapter 2. Experimental ………............................................................11 2.1 Preparation of Carbon–Supported Pt-Ni Nanoparticle Catalysts…....11 2.2 Physical Characterization of the Pt-Ni Catalysts…………………….11 2.2.1Transmission Electron Microscope (TEM)…………………………11 2.2.2Energy Dispersive X-ray Spectrometer (EDX)……………….…....13 2.2.3X-ray diffractometer………………………………………………..14 2.2.4 In situ X-ray diffraction…….……………………………………...15 2.2.5Debye function analysis……………………………………………15 2.2.6 X-ray photoelectron spectroscopy (XPS)…………………………17 2.3Electrode preparation and Electrochemical Measurement…………..18 2.4 Reagents and Gases…………………………………………………19 Chapter 3. Result and Discussion……………………………..………21 v 3.1 Preparation Pt-Ni Nanoparticles…………………………………….21 3.2 X-ray diffraction, Debye function analysis, line profile fitting…….21 3.3 Transmission Electron Microscope………………………….………26 3.4 Energy Dispersive X-ray Analysis and X-ray Photoelectron Spectroscopy……………………..………………………………….27 3.5 Cyclic Voltammery…………….……………………………………28 3.6 Linear sweep voltammery…………………………………………...30 3.7 Tafel plots……………………………………………………………31 3.8 Oxygen reduction reaction activity………………………………….32 Chapter 4. Conclusion ……………………………………...………….58 Reference………………………………………………………………...59

    (1) Xiong, L. M., A. . J. Electrochem. Soc. 2005, 152, A697.
    (2) Antolini, E. Mater.Chem.Phys. 2003, 78, 563.
    (3) Antolini, E. S., J.R.C.; Giz,M.J.; Gonzalez,E.R. Int. J. Hydrogen Energy
    2005, 30, 1213.
    (4) Antolini, E. P., R.R.; Ticianelli,E.A. Electrochim. Acta 2002, 48, 263.
    (5) Cambanis, G. C., D. Appl.Catal. 1986, 25, 191.
    (6) Beard, B. C. R. J., P.N. J. Electrochem. Soc. 1990, 137, 3368.
    (7) Min, M. C., J.; Cho,K.; Kim,H. Electrochim. Acta 2000, 45, 4211.
    (8) Salgado, J. R. C. A., E.; Gonzalez,E.R. . J.Phys.Chem.B 2004, 108, 17767.
    (9) Santiago, E. I. V., L.C.; Villullas, H.M. . J.phys.Chem.C 2007, 111, 3146.
    (10) Watanabe, M. T., K.; Nakamura, T.; Stonehart, P. J. Electrochem. Soc. 1994,
    141, 2659.
    (11) Xiong, L. K., A.M.; Manthiram, A. Electrochem. Commun. 2002, 4, 898.
    (12) Tseng, C. J. L., S.T. ; Lo, S.C. ; Chu,P.P. Mater.Chem.Phys. 2006, 100, 385.
    (13) Beard, B. C. R. J., P.N. . J. Electrochem. Soc. 1986, 133, 1839.
    (14) He, T. K., E.; Xiong, L.; Luo, J.; Zhong, C.J. J. Electrochem. Soc. 2006, 153,
    A1637.
    (15) Li, H. S., G.; Li, N.; Sun, S.; Su, D.; Xin, Q. . J.Phys.Chem.C 2007, 111,
    5605.
    (16) Liu, J. M., M.M.; Petkov, V.; Kariuki, N.N.; Wang, L.; Njoki, P.; Mott, D.;;
    Lin, Y. Z., C.J. Chem. Mater. 2005, 17, 3086.
    (17) Ross, P. N. Electrochim. Acta 1991, 36, 2053.
    (18) Glass, J. T. C., G.L.; Stoner, G.E.; Taylor, E.J. . J. Electrochem. Soc. 1987,
    134, 58.
    (19) Waterstrat, R. M. Metal. Trans. 1973, 4, 455.
    (20) Toda, T. I., H.; Uchida, H.; Watanabe, M. . J. Electrochem. Soc. 1999, 146,
    3750.
    (21) Bett, J. A. K., K.; Stonehart, P. J.Catal. 1974, 35, 307.
    (22) Bett, J. A. K., K.; Stonehart, P. . J.Catal. 1976, 41, 124.
    (23) Giordano, N. P., E.; Pino, L.; Aricò, A.; Antonucci, V.; ; Vivaldi, M. K., K.
    Electrochim. Acta 1991, 36, 1979.
    (24) Kinoshita, K. J. Electrochem. Soc. 1990, 137, 845.
    (25) Antolini, E. J. Mater. Sci. 2003, 38, 2995.
    (26) Antonucci, P. L. A., V.; Giordano, N.; Cocke, D.L.; Kim, H. J. Appl.
    Electrochem. 1994, 24, 58.
    (27) Han, K. S. M., Y.S.; Han, O.H.; Hwang, K.J.; Kim, I.; Kim, H. .
    Electrochem. Commun. 2007, 9, 317.
    (28) Kabbabi, A. G., F.; Andolfatto, F.; Durand, R. J. Electroanal. Chem. 1994,
    373, 251.
    (29) Peuckert, M. Y., T.; Betta, R.A.D.; Boudart, M. . J. Electrochem. Soc. 1986,
    133, 944.
    (30) Schmidt, T. J. S., V.; Arenz, M.; Markovic, N.M.; Ross Jr., P.N. .
    electrochim. Acta 2002, 47, 3765.
    (31) Shaijumon, M. M. R., S.; Rajalakshmi, N. Appl. Phys. Lett 2006, 88, 253105.
    (32) Takasy, Y. O., N.; Zhang, X.G.; Murakami, Y.; Minagawa, H.; Sato, S.; ;
    Yahikozawa, K. Electrochim. Acta 1996, 41, 2595.
    (33) Tian, J. H. W., F.B.; Shan, Z.Q.; Wang, R.J.; Zhang, J.Y. J. Appl.
    Electrochem. 2004, 34, 461.
    (34) Watanabe, M. S., H.; Stonehart, P. J. Electroanal. Chem. 1989, 261, 375.
    (35) Yano, H. Y. I., J.; Uchida, H.; Watanabe, M.; Babu, P.K.; Kobayashi, T. ;
    Chung, J. H. O., E.; Wieckowski, A. . Phys. Chem. Chem. Phys. 2006, 8, 4932.
    (36) Sattler, M. L. R., P.N. Ultramicroscopy 1986, 20, 21.
    (37) Bett, J. L., J.; Washinton, E.; Stonehart, P. . Electrochim. Acta 1973, 18, 343.
    (38) Antolini, E. C., F.; Giacomerri, E.; Squadrito, G. . J. Mater. Sci. 2002, 37,
    133.
    (39) Jalan, V. T., E.J. j. Electrochem. Soc. 1983, 130, 2299.
    (40) Paffett, M. T. B., J.G.; Gottesfeld, S. . j. Electrochem. Soc. 1988, 135, 1431.
    (41) Col´on-Mercado, H. R. P., B.N. . J. Power Sources 2006, 155, 253.
    (42) Roh, W. C., J.; Kim, H. J. Appl. Electrochem. 1996, 26, 623.
    (43) Calabrese, J. C. D., L. F.; Cavalieri, A.; Chini, P.; Longoni, G.;; Martinengo,
    S. J. Am. Chem. Soc. 1974, 96, 2614.
    (44) Calabrese, J. C. D., L. F.; Chini, P.; Longoni, G.;; Martinengo, S. J. Am.
    Chem. Soc. 1974, 96, 2616.
    (45) Longoni, G. C., P. J. Am. Chem. Soc. 1976, 98, 7225.
    (46) Vogel, W. S., W.M.H.; Zhang, Z.; Bunsenges, Ber. J. Phys. Chem. 1993, 97,
    280.
    (47) Iijima, S. I., T. Phys. Rev. Lett. 1986, 56, 616.
    (48) Smith, D. J.; Petford-Long, A. K. W., L. R.; Bovin, J.-O. . Science 1986, 233,
    872.
    (49) Whetten, R. L. K., J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.;; Wang, Z.
    L. S., P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. . Adv. Mater. 1996, 8, 428.
    (50) Hall, B. D. F. e., M.; Monot, R.; Borel, J.-P. . Phys. Rev. B 1991, 43, 3906.
    (51) Reinhard, D. B., P.; Hall, B. D.; Valkealahti, S.; Monot, R. . phys. Rev. B
    1998, 58, 4917.
    (52) Reinhard, D. H., B. D.; Berthoud, P.; Valkealahti, S.; Monot, R. . Phys. Rev.
    Lett. 1997, 79, 1459.
    (53) Gnutzmann, V. V., W. . J. Phys. Chem. 1990, 94, 4991.
    (54) Vogel, W. B., J.; Vollmer, O.; Abraham, I. . J. Phys. Chem. B 1999, 102,
    10853.
    (55) Vogel, W. C., D. A. H.; Tanaka, K.; Haruta, M. Catal. Lett 1996, 40, 175.
    (56) Vogel, W. R., B.; Tesche, B. J. Phys. Chem. 1993, 97, 11611.
    (57) Vogel, W. B., W.; Bo¨nnemann, P.; Rothe, H.; Hormes, J. J. Phys. Chem. B
    1997, 107, 11029.
    (58) Wang, G. V. H., M.A.; Ross, P.N.; Baskes, M.I. Pro. Sur. Sci. 2005, 79, 28.
    (59) Claviliera, J. O., J.M.; Gómezb, R.; Feliub, J.M.; Aldaz, A. . J. Electroanal.
    Chem. 1996, 404, 281.
    (60) Furuya, N. I., M.; Shibata, M. J. Electroanal. Chem. 1999, 460, 251.
    (61) Furuya, N. S., M. J. Electroanal. Chem. 1999, 467, 85.
    (62) Schmidt, T. J. G., H. A.; Sta¨b, G. D.; Urban, P. M.; Kolb,; D. M.; Behm, R.
    J. J. Electrochem. Soc. 1998, 145, 2354.
    (63) Paulus, U. A. S., T. J.; Gasteiger, H. A.; Behm, R. J. J. Electroanal. Chem.
    2001, 495, 134.
    (64) Paulus, U. A. W., A.; Scherer, G. G.; Schmidt, T. J.;; Stamenkovic, V. M., N.
    M.; Ross, P. N. . Electrochim. Acta 2002, 47, 3787.
    (65) Duron, S. R.-N., R.; Nkeng, P.; Poillerat, G.; Solorza-; Feria, O. J.
    Electroanal. Chem. 2004, 566, 281.
    (66) Maillard, F. M., M.; Gloaguen, F.; Leger, J. M. Electrochim. Acta 2002, 47,
    3431.
    (67) Lucas, C. A. M., N. M.; Ross, P. N. Phys. Rev. B 1997, 55, 7964.
    (68) Mukerjee, S. S., S.; Soriaga, M.P. J. Electrochem. Soc. 1995, 142, 1409.
    (69) Toda, T. I., H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 141,
    968.
    (70) Yeager, E. R., M.; Gervasio, D.; Tryk, D. The Electrochemical Society
    Proceedings Series; Pennington: NJ, 1992.
    (71) Griffiths, J. S. Proc. Roy. Soc. (A) 1956, 235, 23.

    QR CODE
    :::