| 研究生: |
邱威閔 Wei-Ming Chiu |
|---|---|
| 論文名稱: |
藉由可調控之填充處理及球晶技術發展以聚乙二醇/矽灰作為固定型態的相變化材料 Development of Polyethylene Glycol/Silica Fume as Shape-stabilized Phase Change Material by Adjustable Impregnation Treatment and Spherical Agglomeration |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 相變化材料 、球晶 、聚乙二醇 、矽灰 |
| 外文關鍵詞: | Phase change material, Spherical agglomeration, Polyethylene glycol, Silica fume |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究的目的為製備聚乙二醇/矽灰複合物作為固-液型態穩定轉換的相變化材料,並討論以不同分子量的聚乙二醇或是不同的填充環境下製成的相變化材料的熱性質及熱行為。接著,再經由原本應用於製藥工業的球晶技術將原本不規則狀的聚乙二醇/矽灰複合物製成球狀來改善其流動性。聚乙二醇/矽灰複合物是透過含浸法來製備的,將矽灰以不同的溶解度百分比的聚乙二醇水溶液進行填充。因聚乙二醇熔點及結晶點受其分子量大小影響,連帶影響了聚乙二醇/矽灰複合物應用在建築材料的摻料的選擇上,本篇選擇的聚乙二醇分子量大小為1000,並探討以分子量1000或4000製備的聚乙二醇/矽灰複合物的差異,在製備的條件上,壓力(真空與否)及溫度高低的影響都將在本研究討論。在常溫真空下製備的聚乙二醇/矽灰複合物擁有最高重量百分比67.5%的聚乙二醇,其熔點範圍為攝氏35-45度,結晶點約在攝氏10-20度。接著我們改變了製備過程中的壓力(真空與否)及溫度(攝氏5度、25度、60度),並探討其熱性質及熱行為的改變,填充過程中,無論是否抽真空,皆沒有顯著影響,日後製成可在一般大氣下進行,節省啟動真空之能源;而溫度則顯著的影響了結晶度。
在球晶製程方面,以700轉的條件下所做出的複合團聚物之形狀可以明顯看出為球狀。因其範圍為1410-2000微米的顆粒有固定範圍尺寸且在所有尺寸顆粒上為相對多數,我們選擇此範圍粒徑作為代表來檢測卡爾係數及斷裂力測試,其卡爾係數為6.62±1.36,代表流動性高;而斷裂力為1.79±0.04牛頓,代表高強度。複合物球晶在不同的粒徑區間其特性都沒有太大的差異,在熱性質的表現上皆有不錯的均質性。
The aim of this research was to prepare a solid-liquid shape-stabilized phase change materials, polyethylene glycol/silica fume (PEG/SF) composite powders. Then, through the spherical crystallization technique which was derived from the area of pharmaceutical engineering to conglomerate the originally irregular PCM composite powders and turned them into spherical agglomerates to improve their flowability. In this research, the molecular weight 1000 of PEG was chosen as the PCM. Since the melting temperature and the crystallization temperature of PEG were affected by the molecular weight of PEG which also determined the application of PEG/SF composite powders. Therefore, thermal behaviors and thermal properties of PEG/SF composite powders with PEG1000 have compared the one with PEG4000. PEG1000 was embedded in SF to form the PEG1000(75)/SF composite powders with a PEG solid loading of 67.5 wt%. (The number 75 in the parentheses represented the 75% of solubility value of PEG1000 aqueous solution at 25℃ of 25 g/15 mL) The melting and crystallization temperature range of PEG1000(75)/SF composite powders were around 35-45℃ and 10-20℃ as determined by the 2nd temperature cycle of DSC after heating equilibrium with a heating rate and a cooling rate of 10℃/min, respectively. Next, the thermal behaviors and the thermal properties of PEG1000(75)/SF by adjusting the impregnation temperatures and pressures were also be studied. Whether the impregnation was under vacuum or not, did not change the actual PEG1000 loading and the phase change enthalpy too much. The crystallinity became higher when the impregnation temperature became higher and vice versa.
The spherical agglomerates of PEG1000(75)/SF were made by the modified spherical agglomeration method. Under the agitation of 700 rpm, the shape of agglomerates appeared to be spherical. Since the 1410-2000 μm particles were the majority in the batch, they were for the Carr’s index and fracture force. The measurements of Carr’s index for the 1410-2000 μm sized agglomerates was 6.62±1.36, and the fracture force was 1.79±0.04 (N). In summary, similar thermal properties and good homogeneity were displayed by different sizes of spheres.
1. Rosen, M. A. Energy sustainability: A pragmatic approach and illustrations. Sustainability. 2009, 1 (1), 55–80.
2. Zalba, B.; Marín, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251–283.
3. Sharma, A.; Tyagi, V.V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318–345.
4. Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems-Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12 (5), 1221–1250.
5. Mallick, K.; Sengupta, A.; Das, S.; Charraraj, S. Modern Mechanical Energy Storage Systems and Technologies. 2016, 5 (02), 727–731.
6. Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ. Convers. Manage. 2004, 45 (9-10), 1597-1615.
7. Sharifi, N. P.; Shaikh, A. A. N.; Sakulich, A. R. Application of phase change materials in gypsum boards to meet building energy conservation goals. Energ. Buildimgs. 2017, 138, 455–467.
8. Johra, H.; Heiselberg, P. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review., Renew. Sustain. Energ. Rev. 2017, 69, 19–32.
9. Liu, F.; Wang, J.; Qian, X. Integrating phase change materials into concrete through microencapsulation using cenospheres. Cem. Concr. Compos. 2017, 80, 317–325.
10. Hassanipour, F.; Lage, J. L. Preliminary experimental study of a bio-inspired, phase-change particle capillary heat exchanger. Int. J. Heat Mass Transf. 2010, 53 (15–16), 3300–3307.
11. Zhang, F.; Zhong, Y.; Yang, X.; Lin, J.; Zhu, Z. Encapsulation of metal-based phase change materials using ceramic shells prepared by spouted bed CVD method., Sol. Energ. Mater. Sol. Cells. 2017, 170, 137–142.
12. Maruoka, N.; Sato, K.; Yagi, J. I.; Akiyama, T. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 2002, 42 (2), 215–219.
13. Yagi, J.; Akiyama, T. Storage of thermal-energy for effective use of waste heat from industries. J. Mater. Process. Technol. 1995, 48 (1–4), 793–804.
14. Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO2 / Fe3O4 hybrid shell as thermoregulatory enzyme carriers : a novel design of applied energy microsystem for bioapplications., Appl. Energ. 2017, 201, 20–33.
15. Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energ. 1983, 30 (4), 313–332.
16. Lane, G. A. Low temperature heat storage with phase change materials. Int. J. Ambient Eng. 1980, 1 (3), 155–168.
17. Alkan, C.; Sari, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol. Energ. 2008, 82 (2), 118–124.
18. Lee, T.; Chiu, Y. H.; Lee, Y.; Lee, H. L. Thermal properties and structural characterizations of new types of phase change material: anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochim. Acta. 2014, 575, 81–89.
19. Zhang, Z.; Yuan, Y.; Zhang, N.; Cao, X. Thermophysical properties of some fatty acids/surfactants as phase change slurries for thermal energy storage. J. Chem. Eng. Data 2015, 60 (8), 2495–2501.
20. Sundararajan, S.; Samui, A. B.; Kulkarni, P. S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J. Mater. Chem. A. 2017, 5, 18379–18396.
21. Wang, C. L.; Yeh, K. L.; Chen, C. W.; Lee, Y.; Lee, H. L.; Lee, T. A quick-fix design of phase change material by particle blending and spherical agglomeration. Appl. Energ. 2017, 191, 239–250
22. Xie, N.; Huang, Z.; Luo, Z.; Gao, X.; Fang, Y.; Zhang, Z. Inorganic salt hydrate for thermal energy storage. Appl. Sci. 2017, 7 (12), 1317–1335.
23. Sharma, S. D.; Kitano, H.; Sagara, K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ. 2004, 29, 31–64.
24. Nagano, K.; Mochida, T.; Takeda, S.; Domański, R.; Rebow, M. Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 2003, 23 (2), 229–241.
25. Dimaano, M. N. R.; Escoto, A. D. Preliminary assessment of a mixture of capric and lauric acids for low-temperature thermal energy storage. Energy 1998, 23 (5), 421–427.
26. Min, X.; Fang, M.; Huang, Z.; Liu, Y.; Huang, Y.; Wen, R.; Qian, T.; Wu, X. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci. Rep. 2015, 5, 1–11.
27. Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2013, 118, 48–53.
28. Meng, J. Y.; Tang, X. F.; Li, W.; Shi, H. F.; Zhang, X. X. Crystal structure and thermal property of polyethylene glycol octadecyl ether. Thermochim. Acta 2013, 558, 83–86.
29. Feng, Y.; Lan, J.; Ma, P.; Dong, X.; Qu, J.; He, H. Chemical structure and thermal properties of lignin modified with polyethylene glycol during steam explosion. Wood Sci. Technol. 2017, 51 (1), 135–150.
30. Gotoh, Y.; Tsukada, M.; Baba, T.; Minoura, N. Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer (Guildf). 1997, 38 (2), 487–490.
31. Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10–12), 690–696.
32. Memon, S. A.; Lo, T. Y.; Barbhuiya, S. A.; Xu, W. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag. Energy Build. 2013, 62, 360–367.
33. Karaman, S.; Karaipekli, A.; Sar, A.; Biçer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2011, 95 (7), 1647–1653.
34. Fang, Y.; Zou, T.; Liang, X.; Wang, S.; Liu, X.; Gao, X.; Zhang, Z. Self-assembly synthesis and properties of microencapsulated n-Tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustain. Chem. Eng. 2017, 5 (4), 3074–3080.
35. Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO2 / Fe3O4 hybrid shell as thermoregulatory enzyme carriers: a novel design of applied energy microsystem for bioapplications. Appl. Energy 2017, 201, 20–33.
36. Ehid, R.; Fleischer, A. S. Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Convers. Manag. 2012, 53 (1), 84–91.
37. Xiao, M.; Feng, B.; Gong, K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers. Manag. 2002, 43 (1), 103–108.
38. Xi, P.; Zhao, T.; Xia, L.; Shu, D.; Ma, M.; Cheng, B. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci. Rep. 2017, 7, 1–9.
39. Feng, L.; Zheng, J.; Yang, H.; Guo, Y.; Li, W.; Li, X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644–650.
40. Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 2012, 14 (38), 13233-13238.
41. Wang, W.; Yang, X.; Fang, Y.; Ding, J. Preparation and performance of form-stable polyethylene glycol / silicon dioxide composites as solid-liquid phase change materials. 2009, 86 (9), 170–174.
42. Chudasama, N. A.; Prasad, K.; Siddhanta, A. K. Agarose functionalization: synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime. Carbohydr. Polym. 2016, 151, 735–742.
43. Sundararajan, S.; Samui, A. B.; Kulkarni, P. S. Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending. Sol. Energy 2017, 144, 32–39.
44. Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2013, 118, 48–53.
45. Siddique, R.; Chahal, N. Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar. Resour. Conserv. Recycl. 2011, 55 (8), 739–744.
46. Ling, T.; Poon, C. Use of phase change materials for thermal energy storage in concrete : an overview. Constr. Build. Mater. 2013, 46, 55–62
47. Srivastava, V.; Agarwal, V. C.; Kumar, R.; Mehta, P. K. Silica Fume: an admixture for high quality concrete. J. Environ. Nanotechnol. 2013, 2, 53–58.
48. Demirboǧa, R.; Gül, R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003, 33 (5), 723–727.
49. Fořt, J.; Pavlíková, M.; Záleská, M.; Pavlík, Z.; Trník, A.; Jankovský, O. Preparation of puzzolana active two component composite for latent heat storage. Ceram. – Silikaty. 2016, 60 (4), 291–298.
50. Hoppe, H.; Bachmann, J.; Muhsin, B.; Drüe, K.-H.; Riedel, I.; Gobsch, G.; Buerhop-Lutz, C.; Brabec, C. J.; Dyakonov, V. The Pozzolanic Reaction of Silica Fume. J. Appl. Phys. 2010, 107 (1), 14-26.
51. Dembovska, L.; Bajare, D.; Pundiene, I.; Vitola, L. Effect of pozzolanic additives on the strength development of high performance concrete. Procedia Eng. 2017, 172, 202–210.
52. Marchon, D.; Flatt, R. J. Mechanisms of cement hydration. Sci. Technol. Concr. Admixtures. 2015, 41 (12), 129–145.
53. Nomure, T.; Okinaka, N.; Akiyama, T. Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 2009, 115 (2), 846-850.
54. Qian, T.; Li, J.; Ma, H.; Yang, J. Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material. Polym. Polym. Compos. 2016, 37 (3), 854–860.
55. Farnand, J. R.; Smith, H. M.; Puddington, I. E. Spherical agglomeration of solids in liquid suspension. Can. J. Chem. Eng. 1961, 39 (2), 94–97.
56. Sirianni, A. F.; Capes, C. E.; Puddington, J. E. Recent experience with the spherical agglomeration process. Can. J. Chem. Eng. 1969, 47 (2), 166–170.
57. Kawashima, Y.; Capes, C. E.; An experimental study of the kinetics od spherical agglomeration in stirred vessel. Powder Technol. 1974, 10(1-2), 85-92
58. Jitkar, S.; Thipparaboina, R.; Chavan, R. B.; Shastri, N. R. Spherical agglomeration of platy crystals: curious case of etodolac. Cryst. Growth Des. 2016, 16 (7), 4034–4042.
59. Varinder, S.; Rathore, M. S. Spherical agglomeration techniques and their evaluation parameters. Int. J. Drug Dev. Res. 2013, 5 (3), 67–76.
60. Tiwari, S.; Verma, P. Spherical crystallization – a novel drug delivery system. Int. J. Pharm. Life Sci. 2011, 2 (9), 1065–1068.
61. Huang, A. Y.; Berg, J. C. Gelation of liquid bridges in spherical agglomeration. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 215 (1–3), 241–252.
62. Kachrimanis, K.; Nikolakakis, I.; Malamataris, S. Spherical crystal agglomeration of ibuprofen by the solvent-change technique in presence of methacrylic polymers. J. Pharm. Sci. 2000, 89 (2), 250–259.
63. Pena, R.; Burcham, C. L.; Jarmer, D. J.; Ramkrishna, D.; Nagy, Z. K. Modeling and optimization of spherical agglomeration in suspension through a coupled population balance model. Chem. Eng. Sci. 2017, 167, 66–77.