跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝大中
Ta-Chung Hsieh
論文名稱: 非接觸式阻抗量測系統之感測器設計
The Design of Impedance Sensor for Contactless Measurement Systems
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 正交主磁場補償差動感應線圈生物組織阻抗非接觸阻抗量測
外文關鍵詞: Biologic Tissue Impedance Measurement, Contactless Impedance Measurement, Differential Alignment Coil
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非接觸式阻抗量測是一種利用磁感應原理檢測生物組織導電率的成像技術,其目的是針對生物阻抗的應用技術,尤其是對臨床診斷和追蹤疾病演變過程都具有十分意義。
    本論文提出一非接觸式阻抗量測系統的設計方法,目的主要是用來量測實物表面的阻抗影像。本系統設計架構主要包含感測系統、掃描系統、訊號處理系統及人機介面。非接觸阻抗量測是利用電磁場感應渦電流原理,以非接觸的方法得到待測物之導電率,在量測時能夠避免接觸阻抗所帶來的影響,不過對於生物組織阻抗量測的應用中,發射磁通與感應磁通的比例可達到10000:1,為了能有效擷取出感應磁通的成分,本系統改良了傳統的同軸差動線圈,提出一正交主磁場補償差動感應線圈以消除主磁場的影響,使感測器有更佳的靈敏度,並且以高性能的掃描平台來帶動感測器,將感測器所擷取到的導電率資訊送到電腦加以計算分析並且重建影像。
    在實驗結果中,吾人分別利用三項不同的性能指標來評估所設計的線圈結構,其中包含感測器的靈敏度、訊號抗雜訊能力及空間解析度,並且實際量測生物組織及金屬導體的表面阻抗影像,而實驗結果不但能驗證本系統的高性能,而且還證明吾人所提出的正交主磁場補償差動感應線圈的可行性與優越性,希望本論文所提出的方法能對非接觸阻抗量測的應用有所貢獻。


    The contactless impedance measurement is a kind of technology of image construction to examine biological conductivity by magnetic induction. It is the improvement of application technology at biologic impedance, especially for clinical diagnosis and the tracking the process of disease.
    The goal of this thesis is to measure the surface impedance of the object. We propose a contactless scheme to measure conductivity. The major scheme includes the sensor, the scanning platform, signal processing system and graphic user interface. This system could estimate the conductivity distribution of the interesting region by contactlessly measuring the coupling field of received coil. The magnetic measurement system could remove the effect of contact impedance. For biologic tissue measurement, the ratio between the primary and secondary components can be up to 10000:1. In order to extract the part of induced current, the primary voltage must be removed from the measurement signal. We use a differential alignment coil to compensate the primary field. The differential alignment sensor could have better effect on the sensitivity. A scanning platform is used to drive the sensor, which extracts the conductivity signal to be calculated and to be reconstructed.
    In the experiment, three performance indexes are adopted including sensitivity, noise, spatial resolution, to evaluate the proposed coil, and to measure surface impedance of biologic tissues and metals. The experimental result not only shows the high performance of proposed system but also provides the feasibility of applying differential alignment coil in biologic tissue impedance measurement. Hopefully, these improvements can help the contactless impedance measurement be applied in various fields practically.

    目 錄 中文摘要 英文摘要 目錄 I 圖目錄 IV 表目錄 VII 第一章 非接觸式阻抗量測介紹 1 1.1 目的及原理 1 1.2 歷史背景 1 1.3 非接觸式感測器的演進與種類 2 1.4 論文組織 3 第二章 生物組織量測原理 5 2.1 生物組織電學特性 5 2.1.1 電解液導電特性 5 2.1.2 組織的阻抗特性 6 2.1.3 細胞等效電路 7 2.2 影響組織阻抗的因素 9 2.2.1 溫度與組織阻抗的關係 9 2.2.2 頻率與組織阻抗的關係 9 2.3 渦電流原理 10 2.3.1 渦電流基本理論 11 2.3.2 渦電流特性 11 第三章 主磁場補償感測器 13 3.1 感測器原理及問題 13 3.2 理論背景 14 3.3 主磁場補償技術 15 3.3.1 同軸差動線圈 15 3.3.2 正交感應線圈 16 3.3.3 主磁場補償差動感應線圈 17 3.4 感測器校正系統 17 第四章 系統架構 20 4.1 感測系統 20 4.1.1 功率放大器 21 4.1.2 儀表放大器 23 4.2 掃描系統 25 4.2.1 掃描平台 25 4.2.2 步進馬達 26 4.2.3 步進馬達驅動電路 27 4.3 訊號處理系統 29 4.3.1 鎖頻放大器 30 4.3.2 二階主動式低通濾波器 32 4.3.3 相位移電路 33 4.4 人機介面 34 4.4.1 介面軟體LabVIEW及資料擷取卡介紹 34 4.4.2 量測介面 36 第五章 實驗結果與討論 40 5.1 感測器靈敏度實驗 40 5.2 訊號雜訊與漂移實驗 46 5.3 空間解析度實驗 47 5.4 實際掃描量測 53 5.4.1 金屬量測實驗 53 5.4.2 假體量測實驗 54 5.4.3 生物組織量測實驗 56 5.5 實驗結果討論 58 第六章 結論及未來展望 60 6.1 結論 60 6.2 未來展望 60 參考文獻 62 論文著作 66

    [1] F. Dickin and M. Wang, "Electrical resistance tomography for process applications," Measurement Science and Technology, no. 3, pp. 247-260, 1996.
    [2] H. C. Yang, "The Design and Applications of Eddy-Current Nondestructive Inspection System," Department of Electrical Engineering National Cheng Kung University, R.O.C., Dissertation for Doctor of Philosophy, July 2003.
    [3] H. Zhiyao, W. Baoliang, and L. Haiqing, "Application of electrical capacitance tomography to the void fraction measurement of two-phase flow," IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 1, pp. 7-12, 2003.
    [4] N. G. Gencer, M. Kuzuoglu, and Y. Z. Ider, "Electrical impedance tomography using induced currents," IEEE Transactions on Medical Imaging, vol. 13, no. 2, pp. 338-350, 1994.
    [5] P. Tarjan and R. Mcfee, "Electrodeless measurements of the effective resistivityof the human torso and head by magnetic induction," IEEE Transactions on Biomed. Eng., vol. 15, pp. 266-278, October 1968.
    [6] H. W. Ko, D. G. Smith, and J. P. Skura, "In-vivo measurement of brain edema with the magnetic bio-impedance method," 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Amsterdam, pp. 1938-1939, 1996.
    [7] S. al-Zeibak and N. H. Saunders, "A feasibility study of in vivo electromagnetic imaging," Physics in medicine and biology, vol. 38, pp. 151-160, 1993.
    [8] H. Griffiths, W. R. Stewart, and W. Gough, "Magnetic induction tomography. A measuring system for biological tissues," Ann. N Y Acad. Sci., vol. 873, pp. 335-345, 1999.
    [9] H. Scharfetter, H. K. Lackner, and J. Rosell, "Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues," Physiological Measurement, vol. 22, no. 1, pp. 131-146, 2001.
    [10] B. U. Karbeyaz and N. G. Gencer, "Electrical conductivity imaging via contactless measurements: an experimental study," Medical Imaging, IEEE Transactions on, vol. 22, no. 5, pp. 627-635, 2003.
    [11] C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dossel, "Planar system for magnetic induction conductivity measurement using a sensor matrix," Physiological Measurement, no. 1, pp. 403-411, 2004.
    [12] N. G. Gencer and M. N. Tek, "Forward problem solution for electrical conductivity imaging via contactless measurements," Physics in Medicine and Biology, vol. 44, no. 4, pp. 927-940, 1999.
    [13] S. Grimnes and O. G. Martinsen, "Bioimpedance and bioelectricity basics," ACADEMIC PRESS, New York, 2000.
    [14] R. Pethig, "Dielectric properties of biological materials:biophysical and medical application," IEEE Trans. Biomed. Eng., no. EI-19, pp. 453-474, 1984.
    [15] J. G. Webster, "Electrical Impedance Tomography," Institute of Physics Publishing, March 1990.
    [16] Pethig R., "Dielectric and Electric Properties of Biological Materials," John Wiley & Sons, 1979.
    [17] E. Zheng, S. Shao, and J.G. Webster, "Impedance of skeletal muscle from 1Hz to 1MHz," IEEE Trans. Biomed. Eng., pp. 649-651, 1984.
    [18] D. K.Cheng, "Field and Wave Electromagnetics, " Pearson Education Taiwan Ltd., 1989.
    [19] D. J. Hagemaier, "Fundamental of eddy current testing, " The American Society For Nondestructive Testing, 1990.
    [20] N. G. Gencer and M. N. Tek, "Electrical conductivity imaging via contactless measurements," IEEE Transactions on Medical Imaging, vol. 18, no. 7, pp. 617-627, 1999.
    [21] C. H. Igney, S. Watson, R. J. Williams, H. Griffiths, and O. Dossel, "Design and performance of a planar-array MIT system with normal sensor alignment," Physiological Measurement, no. 2, p. S263-S278, 2005.
    [22] Z. Z. Yu and A. J. Peyton, "Developement of sensor arrays for electromagnetic inductive tomography: compensation of large background signal vailues ," Trans. Inst. M. C., vol. 20, no. 4, pp. 195-202, 1998.
    [23] H. Scharfetter, R. Merwa, and K. Pilz, "A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT)," Physiological Measurement, vol. 26, no. 2, p. S307-S318, 2005.
    [24] S. Watson, A. Morris, R. J. Williams, H. Griffiths, and W. Gough, "A primary field compensation scheme for planar array magnetic induction tomography," Physiological Measurement, no. 1, pp. 271-279, 2004.
    [25] M. Min, O. Martens, and T. Parve, "Lock-in measurement of bio-impedance variations," Measurement, vol. 27, pp. 21-28, 2000.
    [26] M. L. Meade, "Lock-in amplifiers : principles and applications, " Inspec/Iee, July 1983.
    [27] B. Ulker and N. G. Gencer, "Implementation of a data acquisition system for contactless conductivity imaging," IEEE engineering in medicine and Biology Society, September-October, 2002.
    [28] W. H. Yang, "Application of contactless impedance image in biologic tissue," Department of Electrical Engineering National Central University, R.O.C., Thesis for Master Degree, June 2005.
    [29] P. C. Shih, "Design of the movable electrical impedance tomography system," Department of Electrical Engineering National Central University, R.O.C., Thesis for Master Degree, June 2005.
    [30] J. C. Faes, H. A. van der Meij, J. C. de Munck, and R. M. Heethaar, "The electric resistivity of human tissues (100 Hz-10M Hz): a meta-analysis of review studies," Physiological Measurement, vol. 20, no. 4, p. R1, 1999.

    QR CODE
    :::