| 研究生: |
羅世坤 Shin-Kun Lo |
|---|---|
| 論文名稱: |
流場設計對質子交換膜燃料電池性能之研究 The Flow Field Design in the Polymer Electrolyte Membrane Fuel Cell |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 流場設計 、燃料電池 |
| 外文關鍵詞: | Flow field design, PEMFC |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究採用Nafion 112為主體的膜電極組(MEA)進行單一燃料電池之實驗及分析,藉著不同的流道設計與操作條件,探討對於質子交換膜燃料電池的性能輸出影響。實驗條件包含不同的流道設計,改變電池溫度,改變增濕瓶加濕溫度,氧化劑之種類,與背壓壓力值的變化等。實驗之結果可以供未來組裝電池堆之參考依據。
由實驗結果可以發現,質子交換膜燃料電池在低溫環境下可以快速啟動並可迅速的達到穩定的輸出電壓。此外,在燃料電池的表面溫度為60℃與增濕瓶的加濕溫度為75℃時可以獲得最佳的輸出功率。一般而言,提昇電池溫度有助於電化學反應速度和離子在電解質膜內的傳遞速度,但是,過高的燃料電池溫度會造成膜電極組內發生乾膜(Dry out)的情況,使得燃料電池的性能下降。提昇增濕瓶加濕溫度則是可以增加膜電極組中的水含量。水含量越高,結合膜的內阻抗越低。但膜電極組內部的水含量過高時,將會發生氾濫(Flooding)的現象,阻礙氫氣、氧氣進入擴散層,降低燃料電池性能。
本研究中,在流道設計上使用四種不同的設計,分別為蛇行式(SFF),交差式(IFF),雙交差蛇行式(DISF),雙蛇行交差式(DSIF)。實驗中發現使用蛇行式流道可以獲得最好的燃料電池性能,其原因在於此流道設計可以讓氣體燃料在流道轉角處也會有部分的燃料強迫進入氣體擴散層,並且使用蛇行式流道設計,其流道內部的氣體使用面積為最大。
Abstract
Effects of various flow field designs and operating conditions on the performance of proton exchange membrane fuel cells (PEMFC) are investigated. Nafion 112 membranes are used in the work. Operating conditions studied include humidification temperature, cell temperature, types of oxidizers, and back pressures.
In the investigation, four different flow field designs are studied. These include traditional serpentine flow field (SFF), interdigitated flow field (IFF), and inhouse designed double interdigitated serpentine flow (DISF) and double serpentine interdigitated flow field (DSIF). The experimental results show that the SFF has the best performance in the group. This is because the SFF has a large active surface area for the gas flow and also provides better water removing in cell. Especially in the high current density zone, unnecessary water will block the gas passage and thus reduce the cell performance.
Results also show that increasing the cell temperature increases the cell performance due to improved electrochemical reaction rate and ion conductivity in the electrolyte. However, if the cell temperature goes too high, the membrane may dry out, and the cell performance will decrease. Another important factor is humidification temperature. A suitable humidification temperature can reduce the resistance of the MEA.
1. Carrette, L., Friedrich, K. A. and Stimming, U., “Fuel cells –
Fundamentals and Applications, Fuel Cells,” V. 1, N. 1, pp. 5-39,
(2001).
2. David L. Wood, III, Jung S. Yi and Trung V. Nguyen, “Effect of
direct liquid water injection and interdigitated flow field on the
performance of PEMFC, ” Electrochimica. Acta. V. 43, N. 24,
pp.3795-3809, (1998).
3. Jung Seok Yi and Trung Van Nguyen, “Multi-component transport in
porous electrodes of proton exchange membrane fuel cells using the
interdigitated gas distributors,” J. Electrochem. Soc. V. 146, N. 1,
pp. 38-45, (1999).
4. A.S. Arico, P. Creti, V. Baglio, E. Modica, V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell,” Journal of Power Source, V. 91, pp 202-209, (2000).
5. Masayuki kunimatsu, Toshio Shudo, Yasuo Nakajima, “Study of
performance improvement in a direct methanol fuel cell,” JSAE Review, V. 23, pp. 21-26, (2002).
6. Philip L. Hentall, J. Barry Lakeman, Gary O. Mesped, Paul L. Adcock, Jon M. Moor, “New materials for polymer electrolyte membrane fuel cell current collectors,” J. Power Sources, V. 80, pp. 235-241, (1999).
7. E. Gulzow, T. Kaz, R. Eeissner, H. Sander, L. Schilling, M. V.Bradke, “Study of membrane electrode assemblies for direct methanol fuel cells,” Journal of Power Sources V. 105, pp. 261-266, (2002).
8. Young-Gi Yoon, Won-Yong Lee, Tae-Hyun Yang, Gu-Gon Park, Chang-Soo Kim, “Current distribution in a single cell of PEMFC,” Journal of Power Sources V. 118, pp 193–199, (2003).
9. M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C.Y. Wang, “Experiment study of a direct methanol fuel cell,”
10. M. Baldauf , W. Preidel, Status of the development of a direct methanol fuel cell,” Journal of Power Sources, V. 84, pp. 161-166, (1999).
11. Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, “Measurement of methanol crossover in direct methanol fuel cell,” JSAE Review, V. 22, pp. 151-156, (2001).
12. Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, “Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell,” JSAE Review, V. 23, pp. 133-135, (2002).
13. Doo Hwan Jung, Chang Hyeong Lee, “Performance of a direct methanol polymer electrolyte fuel cell,” Journal of Power Sources, V. 71, pp. 169-173, (1998).
14. Zhaobin Wei, Sui Wang, Baolian Yi, “Influence of electrode structure on the performance of a direct methanol fuel cell,” Journal of Power Source, V. 106, pp. 364-369, (2002).
15. Sylvie Escribano, PierreAldebert, “Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells,” Solid State Ionics V. 77, pp. 318-323, (1995).
16. S.-Y. Ahn, S.-J. Shin, “Performance and lifetime analysis of the kW-class PEMFC stack,” Journal of Power Sources, V. 106, pp 295-303, (2002).
17. D.R. Sena, E.A. Ticianelli , V.A. Paganin, E.R. Gonzalez, “Effect of water transport in a PEFC at low temperatures operating with dry hydrogen,” Journal of Electroanalytical Chemistry V. 477, pp. 164–170, (1999).
18. H.I. Lee, C.H. Lee , T.Y. Oh, “Development of 1kW class polymer electrolyte membrane Fuel cell power generation system,” Journal of Power Sources, V. 107, pp. 110-119, (2002).
19. V.A. Paganin, E.A. Ticianelli ,E.R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, V. 70, pp.55-58, (1998).
20. D. Buttin, M. Straumann, M. Dupont, “Development and operation of a 150 W air-feed direct methanol fuel cell stack,” Journal of Applied electrochemistry, V. 31, n 3, pp. 275-279, (2001).
21. Deryn Chu, Rongzhong Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, V. 79, pp. 82-85, (1999).
22. Rongzhong Jiang, Deryn Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources V. 93, pp. 25-31, (2001).
23. Rongzhong Jiang, Deryn Chu, “Voltage time behavior of a polymer electrolyte membranefuel cell stack at constant current discharge,” Journal of Power Sources V. 92, pp. 193-198, (2001).
24. Woo-Kun Lee, Chien-Hsien Ho, J.W. Van Zee, Mahesh Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, V. 84, pp. 45-51, (1999).
25. C. Lim, C.Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell,” Journal of Power Sources, V. 113, pp. 145-150, (2003).
26. A. Havránek, K. Klafki and K. Wippermann, “The influence of the catalyst loading and the ionomer content on the performance of direct methanol fuel cell anodes,” pp. 1-10
27. L.R. Jordan,A.K. Shukla,T. Behrsing, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, V. 86, pp. 250-254, (2000).
28. Y.-G. YooN., G.-G. Park, T.-H. Yang, J.-N. Han, W.-Y. Lee, C.-S. Kim, “Effect of pore structure of catalyst layer in a PEMFC on its performance,” International Journal of Hydrogen Energy V. 28, pp. 657– 662, (2003).
29. J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration:influence on the performance of a PEMFC,” Journal of Power Sources V. 118, pp. 172–178, (2003).
30、黃柏瑄,PEMFC電集集觸媒層之電熱流傳輸現象之探討, 91年7月。
34、熊思愷,實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究, 90年7月