跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅世坤
Shin-Kun Lo
論文名稱: 流場設計對質子交換膜燃料電池性能之研究
The Flow Field Design in the Polymer Electrolyte Membrane Fuel Cell
指導教授: 曾重仁
Chung-Jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 109
中文關鍵詞: 流場設計燃料電池
外文關鍵詞: Flow field design, PEMFC
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究採用Nafion 112為主體的膜電極組(MEA)進行單一燃料電池之實驗及分析,藉著不同的流道設計與操作條件,探討對於質子交換膜燃料電池的性能輸出影響。實驗條件包含不同的流道設計,改變電池溫度,改變增濕瓶加濕溫度,氧化劑之種類,與背壓壓力值的變化等。實驗之結果可以供未來組裝電池堆之參考依據。
    由實驗結果可以發現,質子交換膜燃料電池在低溫環境下可以快速啟動並可迅速的達到穩定的輸出電壓。此外,在燃料電池的表面溫度為60℃與增濕瓶的加濕溫度為75℃時可以獲得最佳的輸出功率。一般而言,提昇電池溫度有助於電化學反應速度和離子在電解質膜內的傳遞速度,但是,過高的燃料電池溫度會造成膜電極組內發生乾膜(Dry out)的情況,使得燃料電池的性能下降。提昇增濕瓶加濕溫度則是可以增加膜電極組中的水含量。水含量越高,結合膜的內阻抗越低。但膜電極組內部的水含量過高時,將會發生氾濫(Flooding)的現象,阻礙氫氣、氧氣進入擴散層,降低燃料電池性能。
    本研究中,在流道設計上使用四種不同的設計,分別為蛇行式(SFF),交差式(IFF),雙交差蛇行式(DISF),雙蛇行交差式(DSIF)。實驗中發現使用蛇行式流道可以獲得最好的燃料電池性能,其原因在於此流道設計可以讓氣體燃料在流道轉角處也會有部分的燃料強迫進入氣體擴散層,並且使用蛇行式流道設計,其流道內部的氣體使用面積為最大。


    Abstract
    Effects of various flow field designs and operating conditions on the performance of proton exchange membrane fuel cells (PEMFC) are investigated. Nafion 112 membranes are used in the work. Operating conditions studied include humidification temperature, cell temperature, types of oxidizers, and back pressures.
    In the investigation, four different flow field designs are studied. These include traditional serpentine flow field (SFF), interdigitated flow field (IFF), and inhouse designed double interdigitated serpentine flow (DISF) and double serpentine interdigitated flow field (DSIF). The experimental results show that the SFF has the best performance in the group. This is because the SFF has a large active surface area for the gas flow and also provides better water removing in cell. Especially in the high current density zone, unnecessary water will block the gas passage and thus reduce the cell performance.
    Results also show that increasing the cell temperature increases the cell performance due to improved electrochemical reaction rate and ion conductivity in the electrolyte. However, if the cell temperature goes too high, the membrane may dry out, and the cell performance will decrease. Another important factor is humidification temperature. A suitable humidification temperature can reduce the resistance of the MEA.

    目錄 致謝………………………………………………………………………I 摘要……………………………………………………………………II 目錄……………………………………………………………………Ⅳ 圖表目錄…………………………………………………………VI 第一章 緒論………………………………………………………1 1.1 前言……………………………………………………………1 1.2燃料電池運作原理……………………………………2 1.3 燃料電池的種類………………………………………3 1.4 燃料電池的極化現象…………………………………………8 1.5 文獻回顧………………………………………………………9 1.6 研究目的……………………………………………………15 第二章 燃料電池優點與結構分析………………………………18 2.1 燃料電池的優點…………………………………………18 2.2質子交換膜燃料電池結構分析……………………………19 第三章 實驗儀器與實驗方法………………………………………24 3.1掃描式電子顯微鏡(SEM)……………………………………24 3.2 CNC碳板加工機…………………………………………26 3.3 燃料電池測試台…………………………………………26 第四章 結果與討論…………………………………………31 4.1改變燃料電池之表面溫度…………………………………31 4.2改變增濕瓶加濕溫度…………………………………33 4.3改變氫氣及氧化劑側之氣體壓力…………………………34 4.4氧化劑種類…………………………………………………36 4.5改變流道設計…………………………………………………36 第五章 結論與建議……………………………………………………38 5.1 結論………………..…………………………………………38 5.2 未來研究方向與建議…………………...……………………40 參考文獻………………………………..………………………………41 表目錄 表1.1主要燃料電池的特性比較表…………………………………45 表2.1流道設計參數表………………………………………………46 表4.1蛇行式流道設計(SFF)實驗表…………………………………47 表4.2 交岔式流道設計(IFF)實驗表…………………………………48 表4.3 雙交岔蛇行式流道設計(DISF)實驗表………………………49 表4.4 雙蛇行交岔式流道設計(DSIF)實驗表…….…………………50 表4.5 改變電池溫度對電池性能影響結果表………………………51 表4.6 改變增濕瓶溫度對電池性能影響結果表……………………55 表4.7 改變背壓壓力對電池性能影響結果表………………………58 圖目錄 圖 1.1.質子交換膜燃料電池的原理示意圖………………………61 圖1.2.燃料電池極化曲線圖…………………………………………62 圖1.3.蛇行式流道設計氣體擴散示意圖……………………………63 圖 1.4.交岔式流道設計氣體擴散示意圖……………………………64 圖 2.1.蛇行式流道設計(SFF)圖………………………………………65 圖 2.2 交岔式流道設計(IFF)圖………………………………………66 圖 2.3雙交岔蛇行式流道設計(DISF)圖……………………………67 圖 2.4雙蛇行交岔式流道設計(DSIF)圖……………………………68 圖 2.5.1多孔性氣體擴層表面結構SEM圖(放大倍率200)………69 圖2.5.2多孔性氣體擴層表面結構SEM圖(放大倍率500)………69 圖2.5.3多孔性氣體擴層表面結構SEM圖(放大倍率1000)………70 圖2.6燃料電池側視圖……………………………………………71 圖2.7燃料電池內部結構圖…………………………………………71 圖3.1 CNC碳板加工機………………………………………………72 圖3.2燃料電池測試系統儀器………………………………………73 圖3.3燃料電池測試系統儀器(續)……………………………………73 圖3.4燃料電池測試系統儀器(續)……………………………………74 圖3.5實驗裝置圖…………………………………………………75 圖4.1 蛇行式流道,氧化劑為氧氣,在不同電池表面溫度下,電池性能圖。…………………………………………………………76 圖4.2 蛇行式流道,氧化劑為空氣,在不同電池表面溫度下,電池性能圖。……………………………………………………………77 圖4.3 交岔式流道,氧化劑為氧氣,在不同電池表面溫度下,電池性能圖。……………………………………………………………78 圖4.4 交岔式流道,氧化劑為空氣,在不同電池表面溫度下,電池性能圖。……………………………………………………………79 圖4.5 雙交岔蛇行式流道,氧化劑為氧氣,在不同電池表面溫度下,電池性能圖。……………………………………………………80 圖4.6 雙交岔蛇行式流道,氧化劑為空氣,在不同電池表面溫度下,電池性能圖。……………………………………………………81 圖4.7雙蛇行交岔式流道,氧化劑為氧氣,在不同電池表面溫度下,電池性能圖。……………………………………………………82 圖4.8雙蛇行交岔式流道,氧化劑為空氣,在不同電池表面溫度下,電池性能圖。……………………………………………………83 圖4.9蛇行式流道,氧化劑為氧氣,在不同增濕瓶加濕溫度下,電池性能圖。…………………………………………………………84 圖4.10蛇行式流道,氧化劑為空氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………………85 圖4.11交岔式流道,氧化劑為氧氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………………86 圖4.12交岔式流道,氧化劑為空氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………………87 圖4.13雙交岔蛇行式流道,氧化劑為氧氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………88 圖4.14雙交岔蛇行式流道,氧化劑為空氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………89 圖4.15雙蛇行交岔式流道,氧化劑為氧氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………90 圖4.16雙蛇行交岔式流道,氧化劑為空氣,在不同增濕瓶加濕溫度下,電池性能圖。………………………………………………91 圖4.17蛇行式流道,氧化劑為氧氣,在不同背壓壓力值,電池性能圖。………………………………………………………………92 圖4.18蛇行式流道,氧化劑為空氣,在不同背壓壓力值,電池性能圖。………………………………………………………………93 圖4.19交岔式流道,氧化劑為氧氣,在不同背壓壓力值,電池性能圖。………………………………………………………………94 圖4.20交岔式流道,氧化劑為空氣,在不同背壓壓力值,電池性能圖。………………………………………………………………95 圖4.21雙交岔蛇行式流道,氧化劑為氧氣,在不同背壓壓力值,電池性能圖。………………………………………………………96 圖4.22雙交岔蛇行式流道,氧化劑為空氣,在不同背壓壓力值,電池性能圖。………………………………………………………97 圖4.23雙蛇行交岔式流道,氧化劑為氧氣,在不同背壓壓力值,電池性能圖。………………………………………………………98 圖4.24雙蛇行交岔式流道,氧化劑為空氣,在不同背壓壓力值,電池性能圖。………………………………………………………99 圖4.25蛇行式流道,在不同氧化劑下,電池性能圖。………………100 圖4.26交岔式流道,在不同氧化劑下,電池性能圖。………………101 圖4.27雙交岔蛇行式流道,在不同氧化劑下,電池性能圖。………102 圖4.28雙蛇行交岔式流道,在不同氧化劑下,電池性能圖。………103 圖4.29背壓壓力值為0 atm,氧化劑為氧氣,電池性能圖。…………104 圖4.30背壓壓力值為1 atm,氧化劑為氧氣,電池性能圖。…………105 圖4.31背壓壓力值為2 atm,氧化劑為氧氣,電池性能圖。…………106 圖4.32背壓壓力值為0 atm,氧化劑為空氣,電池性能圖。…………107 圖4.33背壓壓力值為1 atm,氧化劑為空氣,電池性能圖。…………108 圖4.34背壓壓力值為2 atm,氧化劑為空氣,電池性能圖。…………109

    1. Carrette, L., Friedrich, K. A. and Stimming, U., “Fuel cells –
    Fundamentals and Applications, Fuel Cells,” V. 1, N. 1, pp. 5-39,
    (2001).
    2. David L. Wood, III, Jung S. Yi and Trung V. Nguyen, “Effect of
    direct liquid water injection and interdigitated flow field on the
    performance of PEMFC, ” Electrochimica. Acta. V. 43, N. 24,
    pp.3795-3809, (1998).
    3. Jung Seok Yi and Trung Van Nguyen, “Multi-component transport in
    porous electrodes of proton exchange membrane fuel cells using the
    interdigitated gas distributors,” J. Electrochem. Soc. V. 146, N. 1,
    pp. 38-45, (1999).
    4. A.S. Arico, P. Creti, V. Baglio, E. Modica, V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell,” Journal of Power Source, V. 91, pp 202-209, (2000).
    5. Masayuki kunimatsu, Toshio Shudo, Yasuo Nakajima, “Study of
    performance improvement in a direct methanol fuel cell,” JSAE Review, V. 23, pp. 21-26, (2002).
    6. Philip L. Hentall, J. Barry Lakeman, Gary O. Mesped, Paul L. Adcock, Jon M. Moor, “New materials for polymer electrolyte membrane fuel cell current collectors,” J. Power Sources, V. 80, pp. 235-241, (1999).
    7. E. Gulzow, T. Kaz, R. Eeissner, H. Sander, L. Schilling, M. V.Bradke, “Study of membrane electrode assemblies for direct methanol fuel cells,” Journal of Power Sources V. 105, pp. 261-266, (2002).
    8. Young-Gi Yoon, Won-Yong Lee, Tae-Hyun Yang, Gu-Gon Park, Chang-Soo Kim, “Current distribution in a single cell of PEMFC,” Journal of Power Sources V. 118, pp 193–199, (2003).
    9. M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C.Y. Wang, “Experiment study of a direct methanol fuel cell,”
    10. M. Baldauf , W. Preidel, Status of the development of a direct methanol fuel cell,” Journal of Power Sources, V. 84, pp. 161-166, (1999).
    11. Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, “Measurement of methanol crossover in direct methanol fuel cell,” JSAE Review, V. 22, pp. 151-156, (2001).
    12. Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, “Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell,” JSAE Review, V. 23, pp. 133-135, (2002).
    13. Doo Hwan Jung, Chang Hyeong Lee, “Performance of a direct methanol polymer electrolyte fuel cell,” Journal of Power Sources, V. 71, pp. 169-173, (1998).
    14. Zhaobin Wei, Sui Wang, Baolian Yi, “Influence of electrode structure on the performance of a direct methanol fuel cell,” Journal of Power Source, V. 106, pp. 364-369, (2002).
    15. Sylvie Escribano, PierreAldebert, “Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells,” Solid State Ionics V. 77, pp. 318-323, (1995).
    16. S.-Y. Ahn, S.-J. Shin, “Performance and lifetime analysis of the kW-class PEMFC stack,” Journal of Power Sources, V. 106, pp 295-303, (2002).
    17. D.R. Sena, E.A. Ticianelli , V.A. Paganin, E.R. Gonzalez, “Effect of water transport in a PEFC at low temperatures operating with dry hydrogen,” Journal of Electroanalytical Chemistry V. 477, pp. 164–170, (1999).
    18. H.I. Lee, C.H. Lee , T.Y. Oh, “Development of 1kW class polymer electrolyte membrane Fuel cell power generation system,” Journal of Power Sources, V. 107, pp. 110-119, (2002).
    19. V.A. Paganin, E.A. Ticianelli ,E.R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, V. 70, pp.55-58, (1998).
    20. D. Buttin, M. Straumann, M. Dupont, “Development and operation of a 150 W air-feed direct methanol fuel cell stack,” Journal of Applied electrochemistry, V. 31, n 3, pp. 275-279, (2001).
    21. Deryn Chu, Rongzhong Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, V. 79, pp. 82-85, (1999).
    22. Rongzhong Jiang, Deryn Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources V. 93, pp. 25-31, (2001).
    23. Rongzhong Jiang, Deryn Chu, “Voltage time behavior of a polymer electrolyte membranefuel cell stack at constant current discharge,” Journal of Power Sources V. 92, pp. 193-198, (2001).
    24. Woo-Kun Lee, Chien-Hsien Ho, J.W. Van Zee, Mahesh Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, V. 84, pp. 45-51, (1999).
    25. C. Lim, C.Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell,” Journal of Power Sources, V. 113, pp. 145-150, (2003).
    26. A. Havránek, K. Klafki and K. Wippermann, “The influence of the catalyst loading and the ionomer content on the performance of direct methanol fuel cell anodes,” pp. 1-10
    27. L.R. Jordan,A.K. Shukla,T. Behrsing, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, V. 86, pp. 250-254, (2000).
    28. Y.-G. YooN., G.-G. Park, T.-H. Yang, J.-N. Han, W.-Y. Lee, C.-S. Kim, “Effect of pore structure of catalyst layer in a PEMFC on its performance,” International Journal of Hydrogen Energy V. 28, pp. 657– 662, (2003).
    29. J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration:influence on the performance of a PEMFC,” Journal of Power Sources V. 118, pp. 172–178, (2003).
    30、黃柏瑄,PEMFC電集集觸媒層之電熱流傳輸現象之探討, 91年7月。
    34、熊思愷,實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究, 90年7月

    QR CODE
    :::