跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊佳霖
Jia-Lin Juang
論文名稱: 鋼骨鋼筋混凝土梁遲滯模式及耐震行為研究
Hysteretic models and seismic behavior of steel reinforced concrete beams
指導教授: 許協隆
Hsieh-Lung Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 141
中文關鍵詞: 遲滯模式鋼骨鋼筋混凝土耐震行為
外文關鍵詞: steel reinforced concrete, hysteretic model, seismic behavior
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 就鋼骨鋼筋混凝土(SRC)梁之設計而言,除須有效推求其承載強度外,變形之估算亦為重要之設計資訊,本研究藉試驗資訊並考量SRC梁受彎矩時之複合效應,推導合理之SRC彎矩-曲率分析模式,並進一步利用斷面應變及鋼骨與混凝土間的握裹力模式推求SRC梁的力量-位移關係,上述分析模式經與實驗結果比較,皆具甚高之吻合性。
    另為獲得SRC梁在反覆載重下之行為,以評估其耐震性能,本研究中亦以衰減參數為基準,推導出SRC斷面彎矩-曲率遲滯模式,此遲滯模式係利用單向載重下之彎矩-曲率關係及修正之樞鈕模式以有效模擬SRC梁撓曲勁度及強度的衰減,本研究中亦考慮反覆載重下之包氏效應,進一步利用SRC梁的遲滯模式進行力量-位移分析,分析所得結果與SRC梁反覆載重實驗結果比較,具有相當的精度。最後,本研究利用SRC梁於反覆載重下之結構反應,推求其等效勁度及等效阻尼與位移韌性之經驗公式,以供耐震設計之參考。


    Effective designs of steel reinforced concrete beams require adequate estimations of member strength as well as associated deformation. This study focuses on the rational derivations for the analytical model of the moment-curvature relationship. Composite mechanism between steel and reinforced concrete was incorporated in the analytical model to acquire the load deformation relationship. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.
    A hysteretic moment-curvature relationship to simulate the behavior of steel reinforced concrete beams under cyclic loading is further investigated in this study. This model adopts the load-deformation relationship acquired from the monotonic loading tests and incorporates the modified pivot behavior to reflect the characteristics on the deteriorations of stiffness and strength when members are subjected to cyclic loading. Influence of Bauschinger effects is included in the hysteretic model to establish the cyclic load-deformation relationship. Finally, a series of empirical expressions on the equivalent stiffness, damping and ductility are proposed for design references.

    摘 要 i Abstract ii 致 謝 iii 目錄 v 表目錄 viii 圖目錄 ix 照片目錄 xiii 第一章 緒論 1 1-1 簡介 1 1-2 研究動機與目的 3 1-3 研究步驟與內容 5 第二章 文獻回顧 7 2-1 現行規範回顧 7 2-2 SRC相關研究回顧 9 2-2.1 SRC梁及SRC梁柱構件 9 2-2.2 鋼骨與混凝土界面握裹力相關研究 11 2-3 遲滯行為 12 2-3.1 遲滯模型 12 2-3.2 遲滯模型於耐震行為應用 13 第三章 單向載重下SRC梁之承載行為 14 3-1 單向載重試驗 14 3-1.1 試驗配置 14 3-1.2 儀器配置 16 3-1.3 試驗進行流程 18 3-2 單向載重試驗結果分析 19 3-2.1 群組一:鋼骨斷面 19 3-2.2 群組二:SRC斷面 20 3-2.3 交互比較 21 3-3 彎矩-曲率模型推導與計算 21 3-3.1 材料組成律 22 3-3.2 握裹需求 24 3-3.3 握裹強度 27 3-3.4 部份複合之斷面分析 29 3-4 彎矩-曲率模型之驗証及敏感度分析 30 3-5 力量-位移分析及驗証 31 3-6 簡化的彎矩強度計算流程 33 3-6.1 RC部份的強度計算 33 3-6.2 鋼骨強度之計算 35 3-6.3 SRC之彎矩強度計算 38 第四章 反覆載重下SRC梁之承載行為 41 4-1 構件勁度及強度衰減模式 41 4-2 反覆載重試驗 45 4-2.1 試驗配置 45 4-2.2 試驗架設 45 4-2.3 試驗進行流程 46 4-3 反覆載重試驗結果分析 46 4-3.1 勁度衰減 47 4-3.2 強度衰減 48 4-4 遲滯模型推導 48 4-4.1 骨幹曲線 48 4-4.2 衰減模式 49 4-4.3 點及分枝(Points&branches) 52 4-4.4 法則(Rules) 55 4-4.5 遲滯模式運作流程 57 4-5 模型驗証 57 4-5.1 彎矩-曲率關係 57 4-5.2 力量-位移關係 58 第五章 SRC梁之耐震行為 60 5-1 能量消散 60 5-2 等效勁度 61 5-3 損壞評估 63 5-3.1 位移-累積能量組合型之損壞指標 63 5-3.2 反覆韌性與單載韌性之關係 64 第六章 結論與建議 67 6-1 SRC梁受單向載重的行為 67 6-2 SRC梁受反覆載重的行為 68 6-3 建議 68 參考文獻 69 圖表及照片 81

    [1]Roeder, C. W., “Overview of Hybrid and Composite Systems for Seismic Design in the United-States”, Engineering Structures, Vol. 20, Iss. 4 , pp. 355-363, 1998.
    [2]Subcommitte on the State-of-the-Art Survey of the Task Committee on Composite Construction , “Composite Steel-Concrete Construction”, Journal of Structural Division-ASCE, Vol. 100, Iss. ST5, pp. 1085-1139, 1974.
    [3]Azizinamini, A., and Ghosh, S. K., “Steel Reinforced Concrete Structures in 1995 Hyogoken-Nanbu Earthquake”, Journal of Structural Engineering-ASCE, Vol. 123, Iss. 8, pp. 986-992., 1997
    [4]IABSE Joint Committee, “Draft Model Code for Composite Structures”, 1979.
    [5]Eurocode4 ,“Design of Composite Structures”,1990.
    [6]內政部營建署. 鋼骨鋼筋混凝土設計規範與解說, 台北, 2004.
    [7]American Concrete Institute (ACI). (2002), Buildings Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). Farmington Hills, Michigan.
    [8]AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago, 1999.
    [9]翁正強、江銘鴻、顏聖益. “包覆型SRC梁剪力握裹破壞試驗與力學行為研究”, 中國土木水利工程學刊, Vol. 13, Iss. 3, pp. 555-565, 2001.
    [10]陳正誠、陳建中. “包覆型鋼骨鋼筋混凝土梁之撓曲行特性”, 中國土木水利工程學刊, Vol. 13, Iss. 2, pp. 263-275, 2001.
    [11]Hsu, H. L., and Wang, C. L., “Flexural-Torsional Behaviour of Steel Reinforced Concrete Members Subjected to Repeated Loading”, Earthquake Engineering & Structural Dynamics, Vol. 29, Iss. 5, pp. 667-682, 2000.
    [12]許協隆、李建輝. “腹版開孔之鋼骨鋼筋混凝土梁反覆載重試驗研究”, 中國土木水利工程學刊, Vol. 14, Iss. 4, pp. 581-590, 2002.
    [13]Ricles, J. M., and Paboojian, S. D., “Seismic Performance of Steel-Encased Composite Columns”, Journal of Structural Engineering-ASCE, Vol. 120, Iss. 8, pp. 2474-2494, 1994.
    [14]翁正強、江銘鴻、陳誠直、林佳宏. “剪力釘對包覆型SRC梁力學行為之影響”, 中國土木水利工程學刊, Vol. 13, Iss. 1, pp. 181-192, 2001.
    [15]Mirza, S. A., Hyttinen, V., and Hyttinen, E., “Physical Tests and Analyses of Composite Steel-Concrete Beam-Columns”, Journal Of Structural Engineering-ASCE, Vol. 122, Iss. 11, pp. 1317-1326, 1996.
    [16]AIJ, “Standards for Structural Calculation of Steel Reinforced Concrete Structures.”, Architectural Institute of Japan, Tokyo, 1987.
    [17]Park, R., and Paulay, T., “Reinforced concrete structures”, John&Wiley, NY.,1975.
    [18]Johnson, R. P., and Anderson, D., “En1994 Eurocode 4: Design of Composite Steel and Concrete Structures”, Proceedings of the Institution of Civil Engineers-Civil Engineering, Vol. 144, Iss., pp. 33-38, 2001.
    [19]Viest, I. M., “Review of Research on Composite Steel-Concrete Beams”, Journal of Structural Division-ASCE, Vol. 86, Iss. ST6, pp. 1-21, 1960.
    [20]Furlong, R. W., “Design of Steel-Encased Concrete Beam-Columns”, Journal of Structural Division-ASCE, Vol. 94, Iss. ST1, pp. 267-281, 1968.
    [21]Johnson, P. R., “Research on Steel-Concrete Composite Beams”, Journal of Structural Division-ASCE, Vol. 96, Iss. ST3, pp. 445-459, 1970.
    [22]Weng, C. C., Yen, S. I., and Chen, C. C., “Shear-Strength of Concrete-Encased Composite Structural Members”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 10, pp. 1190-1197, 2001.
    [23]Weng, C. C., Yen, S. I., and Jiang, M. H., “Experimental Study on Shear Splitting Failure of Full-Scale Composite Concrete Encased Steel Beams”, Journal of Structural Engineering-ASCE, Vol. 128, Iss. 9, pp. 1186-1194, 2002.
    [24]翁正強、顏聖益、陳誠直、黃明慧. “包覆型鋼骨鋼筋混凝土梁之極限彎矩強度研究”, 中國土木水利工程學刊, Vol. 12, Iss. 3, pp. 521-531, 2000.
    [25]翁正強、廖慧明、張荻薇、陳誠直、顏聖益. “鋼骨鋼筋混凝土建築之梁柱構造細則研究”, 土木工程技術, Vol. 2, Iss. 4, pp. 1, 1998.
    [26]翁正強、江銘鴻、顏聖益. “鋼骨鋼筋混凝土(SRC)梁抗彎試驗與力學特性”, 土木水利, Vol. 13 卷 2 期 頁 249, Iss., 2001.
    [27]Eltawil, S., and Deierlein, G. G., “Strength and Ductility of Concrete Encased Composite Columns”, Journal of Structural Engineering-ASCE, Vol. 125, Iss. 9, pp. 1009-1019, 1999.
    [28]Morino, S., “Recent Developments in Hybrid Structures in Japan - Research, Design and Construction”, Engineering Structures, Vol. 20, Iss. 4, pp. 336-346., 1998
    [29]陳正誠、張大鵬、方至楷. “鋼骨鋼筋混凝土短梁之剪力實驗行為”, 中國土木水利工程學刊, Vol. 12 卷 3 期 頁 511, Iss., 2000.
    [30]陳誠直、黃世欽. “高強度鋼骨鋼筋混凝土樑柱行為研究”, 工程科技通訊, Vol. 20 期, Iss., pp. 頁 32,
    [31]陳生金、陳昭榮、朱俊星. “半預鑄鋼骨鋼筋混凝土梁柱接頭研究”, 結構工程, Vol. 17, Iss. 1, pp. 3, 2002.
    [32]林聰悟、王承順、秦志中. “鋼骨鋼筋混凝土撓曲強度設計之探討”, 結構工程, Vol. 12, Iss. 1, pp. 13, 1997.
    [33]Boyd, P. F., Cofer, W. F., and McLean, D. I., “Seismic Performance of Steel-Encased Concrete Columns under Flexural Loading”, ACI Structural Journal, Vol. 92, Iss. 3, pp. 355-364, 1995.
    [34]Chen, C. C., Li, J. M., and Weng, C. C., “Experimental Behaviour and Strength of Concrete-Encased Composite Beam-Columns with T-Shaped Steel Section under Cyclic Loading”, Journal Of Constructional Steel Research, Vol. 61, Iss. 7, pp. 863-881, 2005.
    [35]Sapountzakis, E. J., and Katsikadelis, J. T., “Interface Forces in Composite Steel-Concrete Structure”, International Journal of Solids and Structures, Vol. 37, Iss. 32, pp. 4455-4472, 2000.
    [36]Seracino, R., Oehlers, D. J., and Yeo, M. F., “Partial-Interaction Flexural Stresses in Composite Steel and Concrete Bridge Beams”, Engineering Structures, Vol. 23, Iss. 9, pp. 1186-1193, 2001.
    [37]Subedi, N. K., and Coyle, N. R., “Improving the Strength of Fully Composite Steel-Concrete-Steel Beam Elements by Increased Surface Roughness - an Experimental Study”, Engineering Structures, Vol. 24, Iss. 10, pp. 1349-1355, 2002.
    [38]Faella, C., Martinelli, E., and Nigro, E., “Steel and Concrete Composite Beams with Flexible Shear Connection: “Exact” Analytical Expression of the Stiffness Matrix and Applications”, Computers & Structures, Vol. 80, Iss. 11, pp. 1001-1009, 2002.
    [39]Bryson, J. O., and Mathey, R. G., “Surface Condition Effect on Bond Strength of Steel Beams Embedded in Concrete”, Journal of the American Concrete Institute, Vol. 59, Iss. 3, pp. 397-405, 1962.
    [40]Soh, C. K., Chiew, S. P., and Dong, Y. X., “Damage Model for Concrete-Steel Interface”, Journal Of Engineering Mechanics Asce, Vol. 125, Iss. 8, pp. 979-983, 1999.
    [41]Roeder, C. W., Chmielowski, R., and Brown, C. B., “Shear Connector Requirements for Embedded Steel Sections”, Journal of Structural Engineering-ASCE, Vol. 125, Iss. 2, pp. 142-151, 1999.
    [42]Roeder, C. W., Cameron, B., and Brown, C. B., “Composite Action in Concrete Filled Tubes”, Journal of Structural Engineering-ASCE, Vol. 125, Iss. 5, pp. 477-484, 1999.
    [43]Spacone, E., and El-Tawil, S., “Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art”, Journal Of Structural Engineering-ASCE, Vol. 130, Iss. 2, pp. 159-168, 2004.
    [44]Johansson, M., and Gylltoft, K., “Mechanical Behavior of Circular Steel-Concrete Composite Stub Columns”, Journal of Structural Engineering-ASCE, Vol. 128, Iss. 8, pp. 1073-1081, 2002.
    [45]Aval, S. B. B., Saadeghvaziri, M. A., and Golafshani, A. A., “Comprehensive Composite Inelastic Fiber Element for Cyclic Analysis of Concrete-Filled Steel Tube Columns”, Journal of Engineering Mechanics-ASCE, Vol. 128, Iss. 4, pp. 428-437, 2002.
    [46]Sivaselvan, M. V., and Reinhorn, A. M., “Hysteretic Models for Cyclic Behavior of Deteriorationg Inelastic Structures.” MCEER-99-0018, State University of New York at Buffalo, 1999.
    [47]Clough, R. W. , “Effect of Stiffness Degradation on Earthquake Ductility Requirement”, Report No. 6614, Structural and Material Research, University of California, Berkeley, 1966.
    [48]Takeda, T., A., S. M., and Nielsen, N. N., “Reinforced Concrete Response to Simulated Earthquake”, Journal of Structural Division-ASCE, Vol. 96, Iss. ST-12, pp. 2557-2573, 1970.
    [49]Park, Y. J., Reinhorn, A. M., and Kunnath, S. K., “IDARC:Inelastic Damage Analysis of Reifnroced Concrete Frame - Shear-Wall Structures.” NCEER-87-0008, State University of New York at Buffalo, 1987.
    [50]Bouc, R. “Forced Vibration of Mechanical Systems with Hysteretic”, Proceedings of the 4th Conference on Non-linear Oscillations, Prague, 1976.
    [51]Wen, Y. K. “Methoc of Random Vibration of Hysteretic Systems”, Journal of the Engineering Mechanics Division-ASCE, Vol. 102, Iss. EM-02, pp. 249-263, 1976
    [52]Yalcin, C., and Saatcioglu, M., “Inelastic Analysis of Reinforced-Concrete Columns”, Computers & Structures, Vol. 77, Iss. 5, pp. 539-555, 2000.
    [53]Kwak, H. G., and Kim, S. P., “Bond-Slip Behavior Under Monotonic Uniaxial Loads.” Engineering Structures, Vol. 23, Iss. 3, pp. 298-309, 2001.
    [54]Kwak, H. G., and Kim, S. P., “Cyclic Moment-Curvature Relation of an RC Beam”, Magazine of Concrete Research, Vol. 54, Iss. 6, pp. 435-447, 2002.
    [55]Kwak, H. G., and Kim, S. P., “Monotonic Moment-Curvature Relation of an RC Beam”, Magazine of Concrete Research, Vol. 54, Iss. 6, pp. 423-434, 2002.
    [56]Kwak, H. G., and Kim, S. P., “Nonlinear Analysis of RC Beams Based on Moment-Curvature Relation”, Computers & Structures, Vol. 80, Iss. 7-8, pp. 615-628, 2002.
    [57]Kwak, H. G., and Kim, S. P., “Nonlinear Analysis of RC Beams Based on Moment-Curvature Relation”, Computers & Structures, Vol. 80, Iss. 7-8, pp. 615-628, 2002.
    [58]Kwan, W. P., and Billington, S. L., “Simulation of Structural Concrete under Cyclic Load”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 12, pp. 1391-1401, 2001.
    [59]Spacone, E., Filippou, F. C., and Taucer, F. F., “Fibre Beam-Column Model for Non-Linear Analysis of R/C Frames.1. Formulation”, Earthquake Engineering & Structural Dynamics, Vol. 25, Iss. 7, pp. 711-725, 1996.
    [60]Spacone, E., Filippou, F. C., and Taucer, F. F., “Fibre Beam-Column Model for Non-Linear Analysis of R/C Frames.2. Applications”, Earthquake Engineering & Structural Dynamics, Vol. 25, Iss. 7, pp. 727-742, 1996.
    [61]Miramontes, D., Merabet, O., and Reynouard, J. M., “Beam Global-Model for the Seismic Analysis of RC Frames”, Earthquake Engineering & Structural Dynamics, Vol. 25, Iss. 7, pp. 671-688, 1996.
    [62]Roufaiel, M. S. L., and Meyer, C., “Analytical Modeling of Hysteretic Behavior of R/C Frames”, Journal of Structural Engineering-ASCE, Vol. 113, Iss. 3, pp. 429-444, 1987.
    [63]Chung, Y. S., Meyer, C., and Shinozuka, M., “Modeling of Concrete Damage”, ACI Structural Journal, Vol. 86, Iss. 3, pp. 259-271, 1989.
    [64]Foliente, G. C., “Hysteresis Modeling of Wood Joints and Structural Systems”, Journal of Structural Engineering-ASCE, Vol. 121, Iss. 6, pp. 1013-1022, 1995.
    [65]Chai, Y. H., Romstad, K. M., and Bird, S. M., “Energy-Based Linear Damage Model for High-Intensity Seismic Loading”, Journal of Structural Engineering-ASCE, Vol. 121, Iss. 5, pp. 857-864, 1995.
    [66]Kumar, S., and Usami, T., “An Evolutionary-Degrading Hysteretic Model for Thin-Walled Steel Structures”, Engineering Structures, Vol. 18, Iss. 7, pp. 504-514, 1996.
    [67]Gulkan, P., and Sozen, A., “Inelastic Response of Reinforced Concrete Structures to Earthquake Motions”, ACI Journal, Vol. 71, Iss. 12, pp. 604-610, 1974.
    [68]Powell, G. H., “Supplement to Computer Program DRAIN-2D,” Suplement to Report, DRAIN-2D User’s Guild, University of California, Berkeley, 1975.
    [69]Amde, A. M., and Mirmiran, A., “A New Hysteresis Model for Steel Members”, International Journal for Numerical Methods in Engineering, Vol. 45, Iss. 8, pp. 1007-1023, 1999.
    [70]Mostaghel, N., and Byrd, R. A., “Inversion of Ramberg-Osgood Equation and Description of Hysteresis Loops”, International Journal of Non-Linear Mechanics, Vol. 37, Iss. 8, pp. 1319-1335, 2002.
    [71]Lee, T. K., and Pan, A. D. E., “Analysis of Composite Beam-Columns under Lateral Cyclic Loading”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 2, pp. 186-193, 2001.
    [72]Park, Y. J., and Ang, A. H. S., "Mechanistic Seismic Damage Model for Reinforced-Concrete", Journal of Structural Engineering-ASCE, Vol. 111, Iss. 4, pp. 722-739, 1985.
    [73]Kunnath, S. K., Reinhorn, A. M., and Park, Y. J., "Analytical Modeling of Inelastic Seismic Response of R/C Structures", Journal of Structural Engineering-ASCE, Vol. 116, Iss. 4, pp. 996-1017, 1990.
    [74]Chang, G. A., and Mander, J. B., "Seismic Engergy Based Fatigue Damage Analysis of Bridge Columns: Part I Evaluation of Seismic Capacity." NCEER-94-0006, State University of New York at Buffalo, 1994.
    [75]Bruneau, M., Uang, C. M. and Whittaker A., “Ductile Design of Steel Structures”, McGraw-Hill, NY., 1998.
    [76]Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John&Wiley, New York, 1992.
    [77]Chen, W. F. and Atsuta, T., “Theory of Beam-Columns Volumn1:In-Plane Behavior and Design”, McGRAW-Hill, NY., 1977.
    [78]Chen, W. F. and Atsuta, T., “Theory of Beam-Columns Volumn2: Space behavior and Design”, McGRAW-Hill, NY., 1977.
    [79]Valles, R. E., Reinhorn, A. M., Kunnath, S. K., and Madan, A., “IDARC2D Version 4.0: A Computer Program for the Inelastic Damage Analysis of Buildings.” NCEER-96-0010, State University of New York at Buffalo, 1996.
    [80]Kunnath, S. K., Reinhorn, A. M., and Lobo, R. F., “IDARC Version 3.0: A Program for the Inelastic Damage Analysis of Reinforced Concrete Structures.” NCEER-92-3115B, State University of New York at Buffalo, 1992.
    [81]Dowell, R. K., Seible, F., and Wilson, E. L., “Pivot Hysteresis Model for Reinforced Concrete Members”, ACI Structural Journal, Vol. 95, Iss. 5, pp. 607-617, 1998.
    [82]Cheng, F. Y., “Matrix Analysis of Structural Dynamics: Applications and Earthquake Engineering”, New York, 2003.
    [83]Chopra, A. K., “Dynamics of Structures: Theory and Applications to Earthquake Engineering 2nd Edition”, New Jersey, 2001.
    [84]Kowalsky, M. J. , Priestley, M. J. N. and Macrae, G. A., “Displacement-Based Design : A Methodology for Seismic Design Applied to Single Degree of Freedom Reinforced Concrete Structures”, Report SSPR 94/16, University of California, San Diego, 1994
    [85]Priestley, M. J. N., Seible, F., and Calvi, G. M., “Seismic Design and Retrofit of Bridges”, Jonh Wiley & Sons, New York, 1996.
    [86]范立礎、卓衛東,“橋梁延性抗震設計”,人民交通出版社,北京,2001。
    [87]Amde, A. M., and Mirmiran, A., “A New Hysteresis Model for Steel Members”, International Journal for Numerical Methods in Engineering, Vol. 45, Iss. 8, pp. 1007-1023, 1999.
    [88]Lee, L. H., Han, S. W., and Oh, Y. H., “Determination of Ductility Factor Considering Different Hysteretic Models”, Earthquake Engineering & Structural Dynamics, Vol. 28, Iss. 9, pp. 957-977, 1999.
    [89]Monti, G., and Spacone, E., “Reinforced Concrete Fiber Beam Element with Bond-Slip”, Journal of Structural Engineering-ASCE, Vol. 126, Iss. 6, pp. 654-661, 2000.
    [90]Sivaselvan, M. V., and Reinhorn, A. M., “Hysteretic Models for Deteriorating Inelastic Structures”, Journal of Engineering Mechanics-ASCE, Vol. 126, Iss. 6, pp. 633-640, 2000.
    [91]Liu, Q., Kasai, A., and Usami, T., “Two Hysteretic Models for Thin-Walled Pipe-Section Steel Bridge Piers”, Engineering Structures, Vol. 23, Iss. 2, pp. 186-197, 2001.
    [92]Mostaghel, N., and Byrd, R. A., “Inversion of Ramberg-Osgood Equation and Description of Hysteresis Loops”, International Journal of Non-Linear Mechanics, Vol. 37, Iss. 8, pp. 1319-1335, 2002.
    [93]Girard, C., and Bastien, J., “Finite-Element Bond-Slip Model for Concrete Columns under Cyclic Loads”, Journal of Structural Engineering-ASCE, Vol. 128, Iss. 12, pp. 1502-1510, 2002.
    [94]Saatcioglu, M., and Razvi, S. R., “Strength and Ductility of Confined Concrete”, Journal of Structural Engineering-ASCE, Vol. 118, Iss. 6, pp. 1590-1607, 1992.
    [95]Chai, Y. H., Romstad, K. M., and Bird, S. M., “Energy-Based Linear Damage Model for High-Intensity Seismic Loading”, Journal of Structural Engineering-ASCE, Vol. 121, Iss. 5, pp. 857-864, 1995.
    [96]Williams, M. S. and Sexsmith, R. G., “Seismic Damage Indices for Concrete Structures: A State-of-the-Are Revies,” Earthquake Spectra, Vol. 11, Iss. 2 , pp. 319-349, 1995.
    [97]Williams, M. S., and Sexsmith, R. G., “Seismic Assessment of Concrete Bridges Using Inelastic Damage Analysis”, Engineering Structures, Vol. 19, Iss. 3, pp. 208-216, 1997.
    [98]Mehanny, S. S. F., and Deierlein, G. G., “Seismic Damage and Collapse Assessment of Composite Moment Frames”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 9, pp. 1045-1053, 2001.
    [99]Bozorgnia, Y., and Bertero, V. V., “Damage Spectra: Characteristics and Applications to Seismic Risk Reduction”, Journal of Structural Engineering-ASCE, Vol. 129, Iss. 10, pp. 1330-1340, 2003.
    [100]Farrow, K. T., and Kurama, Y. C., “SDOF Demand Index Relationships for Performance-Based Seismic Design”, Earthquake Spectra, Vol. 19, Iss. 4, pp. 799-838, 2003.
    [101]Li, Q. W., and Ellingwood, B. R., “Structural Response and Damage Assessment by Enhanced Uncoupled Modal Response History Analysis”, Journal of Earthquake Engineering, Vol. 9, Iss. 5, pp. 719-737, 2005.

    QR CODE
    :::