| 研究生: |
汪本璿 Pen-Hsuan Wang |
|---|---|
| 論文名稱: | Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV |
| 指導教授: |
郭家銘
Chia-Ming Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 稀有希格斯衰變 、緊湊渺子線圈 、大強子對撞機緊湊渺子線圈 |
| 外文關鍵詞: | Dark photon, Exotic Higgs decay, Compact Moun Solenoid, Hidden sector |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有關暗光子的理論主要是出自於早期天文物理觀測的結果與 現有理論不符合,這些觀測結果指出新物理的存在。為了解 釋觀測結果,理論學家延伸自標準模型 U(1)群,在 Hidden Sector 中建立了一個新的假設性的 U(1)群。暗光子為此假設 性的 U(1)群的介子。歐洲核子 物理研究所的大強子對撞機為 目前世界上對撞能量最高且高亮度的質子質子對撞機,因此 擁有龐大的潛能來尋找 GeV 質量尺度的暗光子。本篇論文利 用質子-質子質心能量√s = 13 TeV 的對撞產生希格斯粒子, 暗光子則藉由希格斯粒子的稀有衰變來產生,並且通過暗光 子的渺子衰變頻道來尋找新的渺子-渺子對不變質量共振來尋 找暗光子,此研究使用 2016 年全年度 CMS 所蒐集的資料進
行分析,總亮度為35.9fb-1。
The hypothesis of Dark Photon(ZD) is motivated by a number of astrophysi- cal observational anomalies which indicate the new physics beyond Standard Model(SM) is existing in our world. The Hidden Sector contains a hypothetical U (1)D gauge group is introduced by extension of the SM. The ZD is a theoretical particle which does not play a role as Dark Matter(DM) itself but play a role as gauge mediator of hypothetical hidden U(1)D gauge group. With the advent of the Large Hadron Collider(LHC), a powerful machine with unprecedented high central-of-mass energies and high luminosities gives the potential to probe the GeV scale ZD. The searches of ZD from exotic Higgs decays and decaying into a muon pair in pp collision with √s = 13 TeV is ongoing by looking for new dilepton invariant mass in sub-GeV scale. This analysis using full 2016 data recorded by CMS detector in integrated luminosity 35.9 fb−1.
[1] J. C. Kapteyn. “First Attempt at a Theory of the Arrangement and Motion of the Sidereal System”. In: apj 55 (1922), p. 302. DOI: 10.1086/142670.
[2] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Hel- vetica Physica Acta 6 (1933), pp. 110–127.
[3] R. Bernabei et al. “New results from DAMA/LIBRA”. In: (2010). DOI: 10. 1140/epjc/s10052-010-1303-9. eprint: arXiv:1002.1028.
[4] M. Aguilar et al. “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV”. In: Phys. Rev. Lett. 110 (14 2013), p. 141102. DOI: 10.1103/PhysRevLett.110.141102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.110. 141102.
[5] Maxim Pospelov. “Secluded U(1) below the weak scale”. In: (2008). DOI: 10.1103/PhysRevD.80.095002. eprint: arXiv:0811.1030.
[6] Muon et al. “Final Report of the Muon E821 Anomalous Magnetic Mo- ment Measurement at BNL”. In: (2006). DOI: 10.1103/PhysRevD.73. 072003. eprint: arXiv:hep-ex/0602035.
[7] Michel Davier et al. “Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ)”. In: (2010). DOI: 10.1140/epjc/s10052- 010-1515-z. eprint: arXiv:1010.4180.
[8] Nima Arkani-Hamed et al. “A Theory of Dark Matter”. In: (2008). DOI: 10.1103/PhysRevD.79.015014. eprint: arXiv:0810.0713.
[9] Maxim Pospelov and Adam Ritz. “Astrophysical Signatures of Secluded Dark Matter”. In: (2008). DOI: 10.1016/j.physletb.2008.12.012. eprint: arXiv:0810.1502.
[10] Douglas P. Finkbeiner and Neal Weiner. “Exciting Dark Matter and the INTEGRAL/SPI 511 keV signal”. In: (2007). DOI: 10.1103/PhysRevD. 76.083519. eprint: arXiv:astro-ph/0702587.
[11] P. Fayet. “Light spin-1/2 or spin-0 Dark Matter particles”. In: (2004). DOI: 10.1103/PhysRevD.70.023514. eprint: arXiv:hep-ph/0403226.
[12] Ashutosh Kumar Alok et al. “New Physics in b → sμ+μ− after the Measurement of RK ∗ ”. In: (2017). eprint: arXiv:1704.07397.
[13] K. S. Babu, Christopher Kolda, and John March-Russell. “Implications of Generalized Z-Z’ Mixing”. In: (1997). DOI: 10.1103/PhysRevD.57. 6788. eprint: arXiv:hep-ph/9710441.
[14] Daniel Feldman, Zuowei Liu, and Pran Nath. “The Stueckelberg Z′ Exten- sion with Kinetic Mixing and Milli-Charged Dark Matter From the Hid- den Sector”. In: (2007). DOI: 10.1103/PhysRevD.75.115001. eprint: arXiv:hep-ph/0702123.
[15] Eung Jin Chun, Jong-Chul Park, and Stefano Scopel. “Dark matter and a new gauge boson through kinetic mixing”. In: (2010). DOI: 10.1007/ JHEP02(2011)100. eprint: arXiv:1011.3300.
[16] S. A. Abel et al. “Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology”. In: (2008). DOI: 10.1088/1126-6708/2008/07/124. eprint: arXiv:0803.1449.
[17] Clifford Cheung et al. “Kinetic Mixing as the Origin of Light Dark Scales”. In: (2009). DOI: 10.1103/PhysRevD.80.035008. eprint: arXiv:0902. 3246.
[18] Y. Mambrini. “The kinetic dark-mixing in the light of CoGENT and XENON100”. In: (2010). DOI: 10.1088/1475-7516/2010/09/022. eprint: arXiv:1006.3318.
[19] R. Foot. “Implications of mirror dark matter kinetic mixing for CMB anisotropies”. In: (2012). DOI: 10.1016/j.physletb.2012.12.001. eprint: arXiv:1208.6022.
[20] Javier Redondo and Georg Raffelt. “Solar constraints on hidden photons re-visited”. In: (2013). DOI: 10.1088/1475-7516/2013/08/034. eprint: arXiv:1305.2920.
[21] Biswajoy Brahmachari and Amitava Raychaudhuri. “Kinetic mixing and symmetry breaking dependent interactions of the dark photon”. In: (2014). DOI: 10.1016/j.nuclphysb.2014.08.015. eprint: arXiv:1409. 2082.
[22] P Crivelli et al. “Positronium portal into hidden sector: a new experiment to search for mirror dark matter”. In: Journal of Instrumentation 5.08 (2010), P08001. URL: http://stacks.iop.org/1748-0221/5/i=08/a= P08001.
[23] Per Hansson Adrian. The Heavy Photon Search Experiment. 2013. eprint: arXiv:1301.1103.
[24] S. Andreas et al. Proposal for an Experiment to Search for Light Dark Matter at the SPS. 2013. eprint: arXiv:1312.3309.
[25] S. Y. Choi, C. Englert, and P. M. Zerwas. “Multiple Higgs-Portal and Gauge-Kinetic Mixings”. In: (2013). DOI: 10.1140/epjc/s10052-013- 2643-z. eprint: arXiv:1308.5784.
[26] Bob Holdom. “Two U(1)’s and Epsilon Charge Shifts”. In: Phys.Lett. B166 (1986).
[27] P. Galison and A. Manohar. “Two Z’s or Not Two Z’s?” In: Phys.Lett. B136 (1984).
[28] Keith R. Dienes, Christopher Kolda, and John March-Russell. “Kinetic Mixing and the Supersymmetric Gauge Hierarchy”. In: (1996). DOI: 10. 1016/S0550-3213(97)00173-9. eprint: arXiv:hep-ph/9610479.
[29] CMS Collaboration. “Search for the standard model Higgs boson decaying into two photons in pp collisions at s=7 TeV”. In: Physics Letters B 710.3 (2012), pp. 403 –425. ISSN: 0370-2693. DOI: https : / / doi.org/10.1016/j.physletb.2012.03.003. URL: http : / / www . sciencedirect . com / science / article / pii / S0370269312002547.
[30] ATLAS Collaboration. “Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collisions at sqrt(s) = 7 TeV with ATLAS”. In: (2012). DOI: 10.1103/PhysRevLett.108.111803. eprint: arXiv:1202.1414.
[31] Nima Arkani-Hamed et al. “2:1 for naturalness at the LHC?” In: Journal of High Energy Physics 2013.1 (2013), p. 149. ISSN: 1029-8479. DOI: 10. 1007/JHEP01(2013)149. URL: https://doi.org/10.1007/ JHEP01(2013)149.
[32] Hooman Davoudiasl, Hye-Sung Lee, and William J. Marciano. “Dark Side of Higgs Diphoton Decays and Muon g-2”. In: (2012). DOI: 10.1103/ PhysRevD.86.095009. eprint: arXiv:1208.2973.
[33] CMS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at √s = 13 TeV. 2018. eprint: arXiv: 1804.02716.
[34] ATLAS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel with 36 fb−1 of pp collision data at √s = 13 TeV with the ATLAS detector. 2018. eprint: arXiv:1802.04146.
[35] David Curtin et al. “Illuminating Dark Photons with High-Energy Colliders”. In: (2014). DOI: 10.1007/JHEP02(2015)157. eprint: arXiv: 1412.0018.
[36] James D. Bjorken et al. “New Fixed-Target Experiments to Search for Dark Gauge Forces”. In: (2009). DOI: 10.1103/PhysRevD.80.075018. eprint: arXiv:0906.0580.
[37] Eder Izaguirre et al. “New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter”. In: (2013). DOI: 10.1103/PhysRevD. 88.114015. eprint: arXiv:1307.6554.
[38] Miriam D. Diamond and Philip Schuster. “Searching for Light Dark Matter with the SLAC Millicharge Experiment”. In: (2013). DOI: 10.1103/ PhysRevLett.111.221803. eprint: arXiv:1307.6861.
[39] Eder Izaguirre et al. “Physics Motivation for a Pilot Dark Matter Search at Jefferson Laboratory”. In: (2014). DOI: 10.1103/PhysRevD.90.014052. eprint: arXiv:1403.6826.
[40] M. Battaglieri et al. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab. 2016. eprint: arXiv:1607.01390.
[41] S. Abrahamyan et al. “Search for a new gauge boson in the A′ Experiment (APEX)”. In: (2011). DOI: 10.1103/PhysRevLett.107.191804. eprint: arXiv:1108.2750.
[42] H. Merkel et al. “Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron”. In: (2011). DOI: 10.1103/PhysRevLett.106. 251802. eprint: arXiv:1101.4091.
[43] The BABAR Collaboration and B. Aubert. Search for Dimuon Decays of a Light Scalar in Radiative Transitions Y(3S) -> gamma A0. 2009. eprint: arXiv:0902.2176.
[44] The BABAR Collaboration. “Search for a dark photon in e+e- collisions at BABAR”. In: (2014). DOI: 10.1103/PhysRevLett.113.201801. eprint: arXiv:1406.2980.
[45] KLOE-2 Collaboration et al. “Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector”. In: (2012). DOI: 10.1016/j.physletb.2013.01.067. eprint: arXiv:1210.3927.
[46] WASA at COSY Collaboration et al. “Search for a dark photon in the π0 → e+e−γ decay”. In: (2013). DOI: 10.1016/j.physletb.2013.08.055. eprint: arXiv:1304.0671.
[47] Denig, Achim. “Review of dark photon searches”. In: EPJ Web Conf. 130 (2016), p. 01005. DOI: 10.1051/epjconf/201613001005. URL: https: //doi.org/10.1051/epjconf/201613001005.
[48] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumentation 3.08 (2008), S08001. URL: http://stacks.iop.org/1748- 0221/3/i=08/a=S08001.
[49] S. Chatrchyan et al. “The CMS Experiment at the CERN LHC”. In: JINST 3 (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[50] V. I. Klyukhin et al. “Measuring the Magnetic Flux Density in the CMS Steel Yoke”. In: (2012). DOI: 10.1007/s10948-012-1967-5. eprint: arXiv:1212.1657.
[51] V Veszpremi. “Operation and performance of the CMS tracker”. In: Journal of Instrumentation 9.03 (2014), p. C03005. URL: http://stacks.iop. org/1748-0221/9/i=03/a=C03005.
[52] CMS Collaboration. “Performance and Operation of the CMS Electromagnetic Calorimeter”. In: (2009). DOI: 10 . 1088 / 1748 - 0221 / 5 / 03 / T03010. eprint: arXiv:0910.3423.
[53] CMS Collaboration. “Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data”. In: (2009). DOI: 10.1088/ 1748-0221/5/03/T03012. eprint: arXiv:0911.4991.
[54] S Chatrchyan et al. “Performance of the CMS Drift Tube Chambers with Cosmic Rays”. In: JINST 5 (2010), T03015. DOI: 10.1088/1748-0221/ 5/03/T03015. arXiv: 0911.4855 [physics.ins-det].
[55] The CMS Collaboration. “The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC”. In: (2013). DOI: 10.1088/1748-0221/8/11/P11002. eprint: arXiv:1306.6905.
[56] PYTHIA8 Hidden Valley. http : / / home . thep . lu . se / Pythia / pythia82html/HiddenValleyProcesses.html.
[57] Hidden Valley MC Generation with Pythia8. https : / / twiki . cern . ch / twiki/bin/view/Sandbox/HiddenValleyPythia8.
[58] CMS Collaboration. “Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV”. In: (2012). DOI: 10.1088/1748-0221/ 7/10/P10002. eprint: arXiv:1206.4071.
[59] CMS Collaboration. “Particle-flow reconstruction and global event description with the CMS detector”. In: (2017). DOI: 10.1088/1748-0221/ 12/10/P10003. eprint: arXiv:1706.04965.
[60] The CMS collaboration. “The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC”. In: Journal of Instrumentation 8.11 (2013), P11002. URL: http://stacks.iop.org/1748- 0221/8/i=11/a=P11002.
[61] Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET. Tech. rep. CMS-PAS-PFT-09-001. Geneva: CERN, 2009. URL: http: //cds.cern.ch/record/1194487.
[62] Rochester Muon Momentum Correction. https://www-cdf.fnal.gov/ ~jyhan/cms_momscl/cms_rochcor_manual.html.
[63] CMS Collaboration. “Performance of photon reconstruction and identi- fication with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2015). DOI: 10.1088/1748-0221/10/08/P08010. eprint: arXiv:1502.02702.
[64] CMS Collaboration. “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2015). DOI: 10.1088/1748-0221/10/06/P06005. eprint: arXiv: 1502.02701.
[65] Jerome H. Friedman. “Greedy function approximation: A gradient boost- ing machine.” In: Ann. Statist. 29.5 (Oct. 2001), pp. 1189–1232. DOI: 10. 1214/aos/1013203451. URL: https://doi.org/10.1214/aos/ 1013203451.
[66] CMS Collaboration. “Measurements of properties of the Higgs boson de- caying into the four-lepton final state in pp collisions at sqrt(s) = 13 TeV”. In: (2017). DOI: 10.1007/JHEP11(2017)047. eprint: arXiv:1706. 09936.
[67] CMS Egamma POG. MVA recipes for 2016 data and Spring16 MC. https : / / twiki . cern . ch / twiki / bin / view / CMS / MultivariatePhotonIdentificationRun2.
[68] CMS Collaboration. Tag and Probe. https://twiki.cern.ch/twiki/ bin/view/CMSPublic/TagAndProbe.
[69] CMS Collaboration. Electron Tag and Probe. https://twiki.cern.ch/ twiki/bin/view/CMSPublic/ElectronTagAndProbe.
[70] CMS Higgs to ZZ Group. H -> ZZ -> 4l analysis (Run II analysis for Moriond 2017). https://twiki.cern.ch/twiki/bin/viewauth/CMS/ HiggsZZ4l2017.