| 研究生: |
李典錡 Dian-Chi Li |
|---|---|
| 論文名稱: |
覆晶式Ka頻段接收機前端電路與分佈式寬頻放大器之研製 Implementation of the Ka Band Receiver Front-End Circuits with Flip-Chip Package Technology and Distributed Amplifier Design |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 接收機前端電路 、低雜訊放大器 、覆晶式 |
| 外文關鍵詞: | flip-chip, receiver front-end circuits, lna |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著影音多媒體服務逐漸普及,因此網路頻寬需求日益增加。毫米波頻段系統提供了較寬的頻帶,滿足了現代通訊高速率與寬頻的需求,因而成為了無線寬頻通訊產品之重要技術,例如區域多點分佈服務系統(LMDS:Local Multipoint Distribution Service)。除了頻譜需求的考量之外,其獨特的優點特別適於高階的無線通訊產品之發展;諸如頻帶寬對載波頻段相對比例較小,因此較容易達到寬頻應用,同時由於其波長大小適中,許多被動元件與天線尺寸不致太小或太大,更加方便實現。接收機前端電路包含低雜訊放大器、寬頻低雜訊放大器以及分佈式寬頻放大器都是其中毫米波頻段接收機系統設計上的重要電路,這領域是一個非常具有發展性的研究主題。
本論文主要研究內容為射頻毫米波頻段前端電路設計,其包含Ka頻段與V頻段。所設計的晶片皆利用WIN 0.15mm pHEMT製程研製,並且將所設計的晶片應用覆晶式封裝技術期望探討其特性,以利未來開發整體接收端系統模組化。
所設計之晶片其量測與模擬結果如下,共平面波導28 GHz低雜訊放大器的增益為28.6 dB,輸入1 dB壓縮點為-15 dBm,雜訊指數為3.5dB;10-30GHz低雜訊放大器的增益為14.5 dB,輸出1 dB壓縮點功率為10 dBm,雜訊指數為6dB;共平面波導分佈式寬頻放大器在頻寬達32GHz內,增益為大於5 dB,輸出1 dB壓縮點功率為大於5 dBm。共平面波導達靈頓分佈式寬頻放大器在頻寬達35GHz內,增益為大於5 dB,輸出1 dB壓縮點功率為大於5 dBm。V頻段低雜訊放大器則增益模擬結果為18 dB,頻寬範圍為10GHz,雜訊指數為4.84 dB。
As the wireless multi-media services become more and more popular, therefore broadband wireless access techniques are developed to satisfy these demands. The millimeter wave system takes advantages in the wide frequency range, and matches the trend of high data rate and wide-bandwidth in modern wireless communication system. The millimeter wave system, such as LMDS (Local Multipoint Distribution Service), plays an important role in the wireless-broadband technologies. The receiver circuits include low noise amplifiers, broadband low noise amplifier, and distributed amplifier, which are the key components in LMDS system.
The thesis focuses on the millimeter wave receiver front-end circuit designed, which include the low noise amplifiers in Ka band and V band. The circuits are implemented with WIN 0.15mm pHEMT technology, and then apply the filp-chip package technology to investigate the issues of high frequency interconnects. The integrated millimeter wave front end by flip-chip package will be developed in the next study phase.
The measured and simulated results of the designed circuits are illustrated as followings; for the coplanar waveguide 28GHz LNA, the obtained gain is 28.6 dB, input power at the 1-dB gain compression point is -15 dBm, noise figure is 3.5 dB; for 10-30GHz wideband LNA, the gain is 14.5 dB, output power at the 1-dB gain compression point is 10 dBm, noise figure is 6dB; for the coplanar waveguide distributed amplifier, gain is more than 5 dB within 32GHz bandwidth, output power at the 1-dB gain compression point is more than 5 dBm; for the coplanar waveguide Darlington distributed amplifier, the gain is more than 5 dB in within 35GHz bandwidth, output power at the 1-dB gain impression point is more than 5 dBm. The V-band LNA has 18dB gain and the bandwidth is 10GHz, and noise figure is 4.84 dB.
[1] A. Rofougaran, G. Chang, J. J. Rael, J. Y-C. Chang, M. Rofougaran, P.J. Chang, M. Djafari, J. Min, E. Roth, A. A. Abidi, and H. Samueli, “A Single-Chip 900 MHz Spread-Spectrum Wireless Transceiver in 1-mm CMOS, Part 1&2: Receiver Design,” IEEE J. of Solid-State Circuits, vol. 33, no. 4, Apr 1998.
[2] P. J. Chang, A. Rofougaran, and A. A. Abidi, “A CMOS channel-select filter for a direct-conversionwireless receiver,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 722-729, May 1997.
[3] B. Razavi ,” Design considerations for direct-conversion receivers,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Volume: 44 Issue: 6 , June 1997
[4] B. Razavi ,” RF IC design challenges,” Design Automation Conference Proceedings , 15-19 June 1998
[5] K. Chang, I. Bahl, V. Nair, “RF and Microwave Circuit and Component Design for Wireless Systems,” John Wiley, New York, December 2001
[6] B. Razavi, ”RF Microelectronics”, University of California, Los Angeles
[7] G.Gonzalez, “MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design,” Prentice Hall Upper Saddle River, New Jersey 07458
[8] R.N. Simons, ”Coplanar Waveguide Circuit, Components, and System”, Wiley-Interscience, a John Wiley & Sons, INC., Publication
[9] X. Chen, J. Liu, J. Wang, “Ka-band AlGaAs/InGaAs PHEMT monolithic low-noise amplifier”, Millimeter Wave and Far Infrared Science and Technology Proceedings. 4th International Conference on , 12-15 , August 1996
[10] H.S. Chou, C.C. Liu, T.H. Chen, “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers”, Microwave Conference, Asia-Pacific, APMC 2001, Volume: 1 , 3-6, December 2001
[11] J. S. Yuk, B. G. Choi, C. S. Park, “Device and circuit optimization of PHEMT MMIC LNA for low power consumption” , Microwave Conference, Asia-Pacific APMC 2001. Volume: 1, 3-6, December 2001
[12] L. Tran, R. Isobe, M. Delaney, R. Rhodes, D. Jang, J. Brown, L. Nguyen, M. Le, M. Thompson, T. Liu, ”High performance, high yield millimeter-wave MMIC LNAs using InP HEMTs”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, IEEE , Pages:133 – 136, 16-18 June 1996
[13] M. KÄRKKÄINEN, M. VARONEN, P. KANGASLAHTI and K. HALONEN, ” Integrated Amplifier Circuits for 60 GHz Broadband Telecommunication”, Analog Integrated Circuits and Signal Processing, Received February 6, 2004; Revised May 7, 2004; Accepted June 3, 2004
[14] B.J. Jang; I.B. Yom; S.P. Lee;” V-band MMIC low-noise amplifier design based on distributed active device model” Microwave Conference, Asia-Pacific, APMC 2001, Pages: 25 - 28 vol.1 , 3-6 December 2001
[15] B.J. Jang, I.B. Yom, and S.P. Lee;” Millimeter Wave MMIC Low Noise Amplifiers Using a 0.15 mm Commercial pHEMT Process” ETRI Journal, Volume 24, Number 3, June 2002
[16] J.B. Beyer, S.N. Prasad, R.C. Becker, J.E. Nordman, G.K. Hohenwarter ,” MESFET Distributed Amplifier Design Guidelines”; Microwave Theory and Techniques, IEEE Transactions on , Volume: 32 , Issue: 3 , March 1984
[17] K.L. Deng; T.W. Huang; H. Wang;” Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages” Microwave Theory and Techniques, IEEE Transactions on, Volume: 51 , Issue: 11 , November 2003
[18] K.L. Koon, Z. Hu, H. Aghvami, A.A. Rezazadeh, Personal,” High gain and ultra wideband SiGe/BiCMOS cascaded single stage distributed amplifier for 4G RF front-end applications” Indoor and Mobile Radio Communications, PIMRC 2003. 14th IEEE Proceedings on, Volume: 3 , 7-10 September 2003
[19] B.Y. Banyamin, Berwick,” Analysis of the performance of four-cascaded single-stage distributed amplifiers ” Microwave Theory and Techniques, IEEE Transactions on, Volume: 48 , Issue: 12 , December 2000
[20] K.L. Koon, Z. Hu, A.A. Rezazadeh, S. Marsh,” Design optimisation of HBT broadband distributed amplifiers” Electron Devices for Microwave and Optoelectronic Applications, 2001 International Symposium on, 15-16 November 2001
[21] K. Bowers and P. Riehl, “Broaband Microwave Distributed Amplifier”
[22] J. Jordna, “GOLD STUD BUMPS IN FLIP-CHIP APPLICATIONS”, IEEE International Electronics Manufacturing Tech. Symposium, San Jose , CA, July 2002
[23] M. Szymanowski , S.Safavi-Naeieni , “Characterization of a flip-chip interconnect at frequencies up to 30GHz “ , IEEE , 2000
[24] W. Heinrich , A. Jentzsch , and G. Baumann, “Millimeter-Wave Characteristics of Flip-Chip Interconnects for Multichip Modeules”, Microwave Theory and Techniques, IEEE Transactions on, VOL.46, NO.12, December 1998
[25] Y. Arai, M. Sato, H.T. Yamada, T. Hamada, K. Nagai and H.I. Fujishiro “60GHz FLIP-CHIP ASSEMBLED MIC DESIGN CONSIDER CHIP-SUBSTRATE EFFECT” IEEE MTT-S Digest, 1997
[26] W. Bischof, M. Alles, S. Gerlach, A. Kruck, A. Schuppen, J. Sinderhauf, H.-J. Wassener, “SiGe-power amplifiers in flipchip and packaged technology,” IEEE Radio Frequency Integrated Circuits Symposium, 2001.
[27] T. Jenkins, C. Bozada, R. Dettmer, J. Sewell, D. Via, J.Barrette, J. Ebel, G. DeSalvo, Havasy, C.; Liou, L.; Quach, T.; Gillespie, J.; Pettiford, C.; Ito, C.; Nakano, K.; Anholt, R., “Comparison of thermal-shunt and flip-chip HBT thermal impedances: comment on “Novel HBT with reduced thermal impedance,” IEEE Microwave and Wireless Components Letters, Vol. 6, P.268 – 269, July 1996.
[28] P.F. Chen, R.A Johnson, M.C. Ho, W.-J. Ho, A. Sailer, M.F. Chang, P.M. Asbeck, “Microwave and thermal characteristics of backside-connected flip-chip power heterojunction bipolar transistors,” IEE Electronics Letters, Vol. 32, P.1931 – 1932, September 1996.
[29] M. Calligaro, C. Dua, F. d. Hayer,“ GaAs flip-chip pin diode for millimetre-wave application,” IEE Electronics Letters, Vol. 28, P.371 – 372, February 1992.