| 研究生: |
林啟玄 CI-SYUAN LIN |
|---|---|
| 論文名稱: |
高壓輔助熱退火製程改善全無機鈣鈦礦太陽能電池之研究 The Study of Pressure-Assisted Annealing Process to Enhance All Inorganic Perovskite Solar Cell |
| 指導教授: |
詹佳樺
Chia-Hua Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鈣鈦礦 、太陽能電池 、高壓輔助熱退火 |
| 外文關鍵詞: | CsPbBr3, Solar Cell, Pressure-Assisted Annealing Process |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新世代鈣鈦礦太陽能電池在近年發展迅速,有機-無機鈣鈦礦太陽能電池的效率已
經來到了 25.7%,步步進逼傳統的矽基太陽能電池的光轉換效率,但是有機陽離子的
存在使得它對水氧的敏感性很高,容易在長時間的使用下發生降解,是有機-無機鈣鈦
礦太陽能電池的致命缺點,令它難以應用在商業用途,所以越來越多的科學家轉而對
相對穩定的全無機系列的鈣鈦礦太陽能電池進行研究,在這之中又屬 CsPbBr3 材料具
有最佳的穩定性。
現今對於 CsPbBr3太陽能電池的研究仍是以溶液法為大宗,雖然其成本低廉,但
無法兼顧薄膜均勻性和進行大面積的製作,且對於再現性的掌控也不佳,不利於產品
的商業化進展。所以兼顧製程穩定性與大面積製作的熱蒸鍍法便展現其優勢,其中單
源熱蒸鍍法製程簡單,不需調控太過繁瑣的參數,且對設備要求較低,也可製備出高
品質的鈣鈦礦薄膜。
在本研究,以先前實驗室研究單源熱蒸鍍鈣鈦礦太陽能電池元件結構為基礎,利
用 SEM、UV-vis、XRD 等儀器分析進行薄膜成分的優化,再探討厚度對電流密度的影
響,並以壓力輔助的方式進行熱退火製程以及調整退火時間,來提升薄膜品質與增加
晶粒尺寸,成功使電池元件的 Jsc 大幅增加﹐最終在 FTO/c-TiO2/m-TiO2/CsPbBr3/C 的
元件結構之下獲得了: PCE=10.80%、Voc=1.49V、Jsc=9.55mA/cm2、FF=75.83%的成
果,並在存放 30 天後仍具備原始效率的 87%,並在電極面積放大了四倍的元件上具有
原先最佳效率元件的 85%,展現出色的耐候性與薄膜品質。
The new generation of perovskite solar cells has been developed rapidly in recent years.
The efficiency of organic-inorganic perovskite solar cells has reached 25.7%, which is close to
traditional silicon-based solar cells. However, the organic cations makes it highly sensitive to
water and oxygen, and it is easy to degrade under long-term using. It is the disadvantage of
organic-inorganic perovskite solar cells, making it difficult to apply in commercial applications.
Therefore, more and more scientists turn to research on relatively stable all-inorganic series of
perovskite solar cells. Among them, CsPbBr3 material has the best stability.
At present, the research on CsPbBr3 solar cells is still based on the solution process.
Although its cost is low, it cannot take into account the uniformity of the film and the production
of a large area, and the control of reproducibility is also poor, which is not conducive to the
commercialization of the product. Therefore, the vacuum deposition process shows its
advantages. Among them, the single-source vacuum deposition has a simple process, does not
need to master too complicated parameters, and requires less equipment. High-quality
perovskite films can also be prepared.
In this study, we build on previous studies on the structure of single-source vacuum
deposition perovskite solar cell device. Using SEM, UV-vis, XRD and other equipment analysis
to optimize the composition of the film, and then discuss the influence of thickness on the
current density. And then we use pressure-assisted annealing process to improve the film quality
and increase grain size. Successfully increased the Jsc of the device. Finally, we obtained
PCE=10.80%, Voc=1.49V, Jsc=9.55mA/cm2
, FF=75.83% under the structure of FTO/cTiO2/m-TiO2/CsPbBr3/C.
After 30 days of storage, it still has 87% of the original efficiency. And has 85% of the bestefficiency device with four times the electrode area. Shows great environment resistance and
film quality
[1] N. R. E. L. (NREL). “Best Research-Cell Efficiencies,”https://www.nrel.gov/pv/.
[2] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” J Am Chem Soc, 131 (17), 6050-6051, 2009.
[3] Hanul Min, Do Yoon Lee, Junu Kim, Gwisu Kim, Kyoung Su Lee, Jongbeom Kim, Min Jae Paik, Young Ki Kim, Kwang S. Kim, Min Gyu Kim, Tae Joo Shin & Sang Il Seok, “Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes.” Nature 598,444–450, 2021.
[4] Euvrard, J., Yan, Y. F., Mitzi, D. B., “Electrical doping in halide perovskites.” Nat Rev Mater, 6 (6), 531-549, 2021.
[5] Kim, H. S.; Lee, C. R.; Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Gratzel, M., Park, N. G., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Sci Rep-Uk, 2, 2012.
[6] Ball, J. M., Lee, M. M., Hey, A., Snaith, H. J., “Low-temperature processed meso-superstructured to thin-film perovskite solar cells.” Energ Environ Sci, 6 (6), 1739-1743, 2013.
[7] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Gratzel, M., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells.” Nature, 499 (7458), 316-+, 2013.
[8] Dastidar, S., Egger, D. A., Tan, L. Z., Cromer, S. B., Dillon, A. D., Liu, S., Kronik, L., Rappe, A. M., Fafarman, A. T., “High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.” Nano Lett, 16 (6), 3563-3570, 2016.
[9] Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., Cahen, D., “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells.” J Phys Chem Lett, 7 (1), 167-172, 2016.
[10] Tong, G. Q., Chen, T. T., Li, H., Qiu, L. B., Liu, Z. H., Dang, Y. Y., Song, W. T., Ono, L. K., Jiang, Y.; Qi, Y. B., “Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells.” Nano Energy, 65, 2019.
[11] Zhou, S. J., Tang, R., Li, H., Fu, L., Li, B., Yin, L. W., “Fluorescence resonance energy transfer effect enhanced high performance of Si quantum Dots/CsPbBr3 inverse opal heterostructure perovskite solar cells.” J Power Sources, 439, 2019.
[12] Yuan, H. W., Zhao, Y. Y., Duan, J. L., He, B. L., Jiao, Z. B., Tang, Q. W., “Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells.” Electrochim Acta, 279, 84-90, 2018.
[13] Jun Ryu , Saemon Yoon , Seojun Lee , Donggun Lee , Bhaskar Parida , Hyo Won Kwak , Dong-Won Kang, “Improving photovoltaic performance of CsPbBr3 perovskite solar cells by a solvent-assisted rinsing step.” Electrochimica Acta, 368 ,137539, 2021.
[14] Liu, M. Z., Johnston, M. B., Snaith, H. J., “Efficient planar heterojunction perovskite solar cells by vapour deposition.” Nature, 501 (7467), 395-+, 2013.
[15] Duan, Y. Y., Zhao, G., Liu, X. T., Ma, J. L., Chen, S. Y., Song, Y. L., Pi, X. D., Yu, X. G., Yang, D. R., Zhang, Y. Q., Guo, F., “Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation.” Appl Surf Sci, 562, 2021.
[16] Gaonkar, H., Zhu, J. H., Kottokkaran, R., Bhageri, B., Noack, M.; Dalai, V., Thermally Stable, Efficient, “Vapor Deposited Inorganic Perovskite Solar Cells.” Acs Appl Energ Mater, 3 (4), 3497-3503, 2020.
[17] Junhao Zhu, Ranjith Kottokkaran, Saba Sharikadze, Laila-Parvin Poly and Vikram Dalal, “Inorganic perovskite solar cells with high voltage and excellent stability against thermal and environmental degradation.” IEEE 48th Photovoltaic Specialists Conference (PVSC), 21129571, 2021.
[18] El Ajjouri, Y., Palazon, F., Sessolo, M.; Bolink, H. J., “Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites.” Chem Mater, 30 (21), 7423-7427, 2018.
[19] Li, J.; Gao, R. R., Gao, F., Lei, J., Wang, H. X., Wu, X., Li, J. B., Liu, H., Hua, X. D.; Liu, S. Z., “Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation.” J Alloy Compd, 818, 2020.
[20] Li, X., Tan, Y., Lai, H., Li, S. P., Chen, Y., Li, S. W., Xu, P.; Yang, J. Y., “All-Inorganic CsPbBr3 Perovskite Solar Cells with 10.45% Efficiency by Evaporation-Assisted Deposition and Setting Intermediate Energy Levels.” Acs Appl Mater Inter, 11 (33), 29746-29752, 2019.
[21] Commandeur, D., Morrissey, H., Chen, Q., “Solar Cells with High Short Circuit Currents Based on CsPbBr3 Perovskite-Modified ZnO Nanorod Composites.” Acs Appl Nano Mater, 3 (6), 5676-5686, 2020.
[22] Murata, A., Nishimura, T., Shimizu, H., Shiratori, Y., Kato, T., Ishikawa, R., Miyajima, S., “Effect of high-temperature post-deposition annealing on cesium lead bromide thin films deposited by vacuum evaporation.” Aip Adv, 10 (4), 2020.
[23] Hua, J. C., Deng, X., Niu, C., Huang, F. Z., Peng, Y., Li, W. N., Ku, Z. L., Cheng, Y. B., “A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation.” Rsc Adv, 10 (15), 8905-8909, 2020.
[24] Liu, L. L., Yang, S. E., Liu, P.; Chen, Y. S., “High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells.” Sol Energy, 232, 320-327, 2022.
[25] Lee, E. J., Kim, D. H., Chang, R. P. H., Hwang, D. K., “Induced Growth of CsPbBr3 Perovskite Films by Incorporating Metal Chalcogenide Quantum Dots in PbBr2 Films for Performance Enhancement of Inorganic Perovskite Solar Cells.” Acs Appl Energ Mater, 3 (11), 10376-10383, 2020.
[26] Wang, D., Li, W. J., Du, Z. B., Li, G. D., Sun, W. H., Wu, J. H., Lan, Z., “Highly Efficient CsPbBr3 Planar Perovskite Solar Cells via Additive Engineering with NH4SCN.” Acs Appl Mater Inter, 12 (9), 10579-10587, 2020.
[27] Isabelli, F., Di Giacomo, F., Gorter, H., Brunetti, F., Groen, P., Andriessen, R.; Galagan, Y., “Solvent Systems for Industrial-Scale Processing of Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Sells.” Acs Appl Energ Mater, 1 (11), 6056-6063, 2018.
[28] Barranco, A., Lopez-Santos, M. C.; Idigoras, J., Aparicio, F. J., Obrero-Perez, J., Lopez-Flores, V., Contreras-Bernal, L., Rico, V., Ferrer, J., Espinos, J. P., Borras, A., Anta, J. A., Sanchez-Valencia, J. R., “Enhanced Stability of Perovskite Solar Cells Incorporating Dopant-Free Crystalline Spiro-OMeTAD Layers by Vacuum Sublimation.” Adv Energy Mater, 10 (2), 2020.
[29] Feleki, B. T., Weijtens, C. H. L., Wienk, M. M., Janssen, R. A. J., “Thin Thermally Evaporated Organic Hole Transport Layers for Reduced Optical Losses in Substrate-Configuration Perovskite Solar Cells.” Acs Appl Energ Mater, 4 (4), 3033-3043, 2021.
[30] Poli, I., Baker, J., McGettrick, J., De Rossi, F., Eslava, S., Watson, T., Cameron, P. J., “Screen printed carbon CsPbBr3 solar cells with high open-circuit pho0tovoltage.” J Mater Chem A, 6 (38), 18677-18686, 2018.
[31] Liu, J. M., Zhu, L. Q., Xiang, S. S., Wei, Y., Xie, M. L., Liu, H. C., Li, W. P.; Chen, H. N., “Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells.” Sustain Energ Fuels, 3 (1), 184-194, 2019.
[32] 陳致堯, 「單源熱蒸鍍製備CsPbBr3無機鈣鈦礦太陽能電池之研究」,國立中央大學,碩士論文, 民國110年。
[33] 黃天賜, 「單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究」,國立中央大學,碩士論文, 民國110年。
[34] Junhao Zhu, Ranjith Kottokkaran, Saba Sharikadze, Harshavardhan Gaonkar, Laila-Parvin Poly, Arkadi Akopian, and Vikram L. Dalal , “Inorganic Perovskite Solar Cells with High Voltage and Excellent Thermal and Environmental Stabili” ACS Appl. Energy Mater., 5, 5, 6265–6273,2022.