跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建宏
Jian-hong Chen
論文名稱: 量子點分子之量子干涉效應對傳輸及熱電特性的影響
Quantum interference effects on the transport and thermoelectric properties of quantum dot molecules
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 49
中文關鍵詞: 量子干涉效應
外文關鍵詞: Quantum interference effect
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用 tight-binding 模型來研究分析三角型的量子點分子 及 對稱四角型量子點分子之傳輸。借由凱帝旭格林函數(Keldysh-Green`s function )的技巧可以得出系統中的電導值以及西貝克係數。我們將討論量子干涉效應對電導及西貝克係數(Seebeckcoefficient)的影響。此種量子點分子系統有提供兩個傳導路徑允許電子從左電極到右電極,所以具備了產生量子干涉的條件。利用閘極電位來控制量子點的能階進而達到控制量子點的耦合躍遷強度(Hopping strength),因而可以檢測量子干涉效應。由於我們忽略了量子點間的庫倫作用力,所以結果不適用在量子點有多電子佔據的情況。


    The charge of triangular and square quantum dot (QD) molecules (QDMs) is studied by using tight-binding model. The electrical conductance and Seebeck coefficient of QDMs are calculated by Keldysh-Green`s function method. Due to two paths, the quantum interference (QI) effect arising from the coherent tunnelingbetween QDs can be observed. We use the longdistance coherent tunneling mechanism to manipulate QI and examine the effect of QI on the thermoelectric coefficients of QDMs connected to metallic electrodes. Because we have ignored electron Coulomb interactions, our results are limited to the case of QDMs energy levels above the Fermi energy of electrodes.

    摘 要.............................................................................................................................I Abstract..........................................................................................................................II 致謝...............................................................................................................................III 目錄...............................................................................................................................IV 圖目錄...........................................................................................................................VI 第一章 導論 .................................................................................................................1 1-1 前言 .................................................................................................................1 1-2 歷史簡介 .........................................................................................................2 1.3 研究動機 .........................................................................................................5 第二章 系統模型與公式 .............................................................................................7 2-1 系統模型簡介 ................................................................................................7 2-2 系統模型公式 ................................................................................................8 第三章 三顆量子點分子系統傳輸及熱電特性分析 .............................................15 3-1 量子點分子結構的共振能量 ......................................................................15 3-2 熱電係數 ......................................................................................................17 3-3 量子干涉效應 ..............................................................................................22 第四章 四顆量子點分子系統傳輸及熱電特性分析 .............................................28 4-1 量子點分子結構的共振能量 ......................................................................28 4-2 量子干涉效應 ..............................................................................................29 第五章 結論 ...............................................................................................................33 參考文獻......................................................................................................................34

    [1]E. Velmre,“Thomas Johann Seebeck and his contribution to the modern
    science and technology”, Electronics Conference (BEC), 2010 12th
    Biennial Baltic, Tallinn (2010).
    [2]Y. G. Gurevich and G. N. Logvinov,“Physics of thermoelectric
    cooling”, Semicond. Sci. Technol. 20, R57 (2005).
    [3]A. F. Ioffe,“Semiconductor thermoelements, and Thermoelectric
    cooling”, Infosearch Limited, London, (1957).
    [4]I. D. Hicks, M. S. Dresselhaus, “Thermoelectric figure of merit of
    a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993).
    [5]R. Eisberg, R. Resnick. Chapter 3 -“e Broglie's Postulate—Wavelike
    Properties of Particles. Quantum Physics: of Atoms, Molecules”, Solids,
    Nuclei,and Particles 2nd Edition. John Wiley & Sons.ISBN 0-471-87373-X
    (1985).
    [6]C. Davisson, L. H. Germer,“Reflection of electrons by a crystal of
    nickel”, Nature.Vol. 119: 558–560(1927).
    [7]Constant M. Guédon, Hennie Valkenier, Troels Markussen, Kristian
    S.Thygesen,Jan C. Hummelen & Sense Jan van der Molen,“Observation of
    quantum interference in molecular charge transport”, Nature
    Nanotechnology7,305–309 (2012).
    [8]J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D.
    Goldhaber-Gordon, K. Campman, and A. C. Gossard,“Gate-Controlled
    Spin-Orbit Quantum Interference Effects in Lateral Transport”, Phys. Rev.
    Lett.90,076807 (2003).
    [9]San-Huang Ke * and Weitao Yang, Harold U.Baranger,
    “Quantum-Interference-Controlled Molecular Electronics”,Nano
    Lett.,8 (10), pp 3257–3261(2008).
    [10]S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum
    Interference”,Phys. Rev. Lett. 81, 3611(1998).
    [11]Chih-Chieh Chen, Yia-chung Chang, and David M. T. Kuo, "Quantum
    interference and electron correlation in charge transport through
    triangular quantum dot molecules" ,Phys. Chem. Chem. Phys. 17,
    6606-6611 (2015)
    [12]M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour,
    “Conductance of a Molecular Junction”,Science,278, 252–254.(1997).
    [13]C. Joachim, J. Gimzewski and A. Aviram, “Electronics using
    hybrid-molecular and mono-molecular devices”, Nature,408, 541–548
    (2000).
    [14]J. Bergfield and C. Stafford, “Many-body theory of electronic
    transport in single-molecule heterojunctions”, Phys. Rev. B: Condens.
    Matter Mater. Phys.,79, 245125.(2009).
    [15]M.Busl, G.Granger, L.Gradreau, R.Sanchez, A.Kam, M. Pioro-Ladriers,
    S. A. Studenikin, P. Zawadzki, Z. R. Wasilewski, A. S. Sachrajda and G.
    Platero, “Bipolar spin blockade and coherent state superpositions in a
    triple quantum dot”,Nature Nanotech 8, 261 (2013).
    [16]F. R. Braakman, P. Barthelemy, C. Reichi, W. Wegscheider, and L. M.
    K. Vandersypen, “Long-distance coherent coupling in a quantum
    dot array”, Nature Nanotech 8, 432 (2013).
    [17]S. Amaha, W.Izumida, S.Teraoka, S. Tarucha, J. A. Gupta and
    D.G.Austing, “Two- and Three-Electron Pauli Spin Blockade in

    Series-Coupled Triple Quantum Dots”, Phys. Rev. Lett.110,016803 (2013).
    [18]J. P. Perdew, Alex Zunger,“Self-interaction correction to
    density-functional approximations for many-electron systems”,Phys. Rev.
    B 23, 5048 (1981).
    [19]David M. T. Kuo and Yia-chung Chang, “Theory of spin blockade, charge
    ratchet effect, and thermoelectrical behavior in serially coupled quantum
    dot system”, Phys. Rev. B 84 ,245303 (2011).
    [20]Yigal Meir, Ned S. Wingreen,“Landauer formula for the current
    through an interacting electron region”, Phys. Rev. Lett. 68, 2512
    (1992).
    [21]David M.-T. Kuo and Yia-Chung Chang, “Tunneling Current Spectroscopy
    of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev.
    Lett. 99, 086803 (2007).
    [22]David M.-T. Kuo and Yia-Chung Chang, “Thermoelectric and thermal
    rectification properties of quantum dot junctions” ,Phys. Rev. B 81,
    205321 (2010).
    [23]Zijian Li, Si Tan, Elah Bozorg-Grayeli, Takashi Kodama, Mehdi
    Asheghi, Gil Delgado,Matthew Panzer, Alexander Pokrovsky, Daniel Wack,
    and Kenneth E. Goodson , “Phonon dominated heat conduction normal to
    Mo/Si multilayers with period below 10 nm”, Nano Lett.12 (6), pp 3121–
    3126 (2012).
    [24]Charles Kittel and Donald F ,“Holcomb Introduction to Solid State
    Physics”,Am.J.Phys. 35, 547 (1967).
    [25]D.M.T Kuo and Y-C.Chang, “Bipolar Thermoelectric Effect in a
    Serially Coupled Quantum”,Jpn.J.Appl.Phys.50,105003(2011).
    [26]David M. T. Kuo and Yia-chung Chang, “Long-distance coherent
    tunneling effect on the charge and heat currentsin serially coupled triple
    quantum dots”, Phys. Rev. B 89, 115416 (2014).
    [27]Z. Y. Zeng, F. Claro, and Alejandro Pérez, “Fano resonances and
    Aharonov-Bohm effects in transport through a square quantum dot
    molecule”, Phys. Rev. B 65, 085308-Published 4 February(2002).

    QR CODE
    :::