跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐維揚
Wei-Yang Hsu
論文名稱: 門禁監控即時辨識系統之實用設計
指導教授: 王文俊
Wen-June Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 54
中文關鍵詞: 即時辨識圖形識別影像處理
外文關鍵詞: pattern recognition, moment
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是設計一個低成本、高實用性的銀行保全監控系統。當客戶進入銀行等金融機構時,此系統會即時識別客戶是否有遮蔽臉部之裝扮(例如頭戴安全帽或口罩),若有此裝扮時,系統會立即啟動語音予以告知客戶將此裝扮褪去,同時亦可提醒保全人員留意其犯案之可能性。
    系統架構於個人電腦,並透過USB介面的數位攝影機作為影像擷取裝置,可降低成本並提高實用性。利用影像處理技巧和類神經網路等技術,完成影像辨識,本系統可在複雜背景環境下執行,亦可同時偵測多目標,在辨識率方面,每一類樣本的辨識成功率均可達到九成以上。最終目的在協助保全人員,避免人為疏忽而使得歹徒有可乘之機。


    This thesis is mainly designed for a low-cost and high practical monitoring system on bank security service. As any customer entering a financial institution, e.g. a bank, this system will recognize if the customer has any decoration to cover his/her face. If it is true, the system will launch its sounds to inform the customer of removing the decoration immediately. Meanwhile, the system can remind the security service personnel of noticing the possible criminal.
    This system is built up in a personal computer. A digital camera with USB interface is used for the image collector; it can reduce the cost and raise the practicability. The techniques of image processing and neural networks are used to finish image recognition. This system can execute in a complex background, and detect many targets. The recognition rate will be more than 90% in each type of samples. The final goal of this thesis is to help security service personnel with avoiding man-made carelessness of robbery.

    摘要 Ⅰ 圖目錄 Ⅳ 表目錄 Ⅷ 第一章 緒論 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文架構 2 第二章 系統設備簡介與辨識流程 2.1系統架設環境 4 2.2硬體設備 5 2.3辨識流程 5 第三章 影像前置處理 3.1簡介 8 3.2影像擷取流程及影像前置處理流程 8 3.3背景相減 9 3.4影像水平投影圖之計算 14 3.5熵(Entropy)的量測 16 3.6輪廓搜尋 18 第四章 安全帽特徵辨識 4.1簡介 22 4.2安全帽特徵分析 22 4.3人臉膚色偵測 23 4.4矩 26 4.5特徵分類 30 第五章 實際測試結果 5.1實驗一: 未戴安全帽或口罩之測試 34 5.2實驗二: 戴全罩式安全帽之測試 36 5.3實驗三: 戴淑女式安全帽之測試 38 5.4實驗四: 戴半罩式安全帽之測試 41 5.5實驗五: 戴半罩式安全帽及口罩之測試 45 5.6結論 48 第六章 討論與結論 6.1討論 49 6.2結論 49 6.3未來改進及展望 50 參考文獻 52

    [1]S. Birchfield, ”An Elliptical Head Tracker,” The Thirty-First Asilomar Conference on Signals Systems & Computers,pp. 1710 –1714, 1997.
    [2]S. Birchfield, “Elliptical Head Tracking Using Intensity Gradients and Color Histograms,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 232 –237, 1998.
    [3]S. Khan and M. Shah, “Tracking People in Presence of Occlusion,” Asian Conference on Computer Vision, Taipei, Taiwan, 2000.
    [4]W. C. Huang, C. H. Wu and J. D. Irwan, “Recognition of Colorful Objects in Variant Backgrounds and Illumination Conditions,”IEEE International Conference on Industrial Technology, pp. 849 -853, 1996.
    [5]C. Lin and K. C. Fan, “Triangle-based approach to the detection of human faces,” Pattern Recognition, vol. 34, issue 6, pp. 1271-1284, 2001.
    [6]P. Chang and J. Krumm, ”Object Recognition with Color Cooccurrence Histograms,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, 1999.
    [7]S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld and H. Wechsler, “Tracking Groups of People,” Computer Vision and Image Understanding, vol. 80, pp. 42-56, 2000.
    [8]K.N. Plataniotis and A.N. Venetsanopoulos, Color Image Processing and Applications, Springer-Verlag Berlin Heidelberg, New York, 2000.
    [9]J. Martin, V. Devin, and J. L. Crowley, ”Active hand tracking,” IEEE Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan, April 1998.
    [10]I. Pitas, Digital Image Processing Algorithms and Applications, John Wiley & Sons, New York, 2000.
    [11]R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002.
    [12]J. R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, New York, 1997.
    [13]L. Costa and R. Cesar, Shape Analysis and Classification, CRC Press LLC, New York, 2001.
    [14]R. Klette and P. Zamperoni, Handbook of IMAGE PROCESSING OPERATORS, John Wiley & Sons, New York, 1996.
    [15]J. Adamek, Foundations of Coding, John Wiley & Sons, New York, 1991.
    [16]R. W. Hamming, Coding and Information Theory, 2nd Edition, Prentice-Hall, New York, 1986.
    [17]J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision, Graphics, and Image Processing, pp. 273-285, 1985.
    [18]M. K. Hu, “Visual Pattern Recognition by Moment Invariants,” IRE Trans. Info. Theory, vol. 8, pp. 179-187, 1962.
    [19]T. C. Hsia, “A Note on Invariant Moments in Image Processing,” IEEE Trans. System, Man, and Cybernetics, vol. 11, pp. 831-834, 1981.
    [20]許璧蟬, “門禁監控即時辨識系統”, 國立中央大學電機所碩士論文, 2002年6月, 王文俊 教授 指導
    [21]鍾國亮,影像處理與電腦視覺,台灣東華書局股份有限公司,中華民國九十一年六月
    [22]繆紹綱,數位影像處理活用 Matlab,全華科技圖書股份有限公司,1999年11月
    [23]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,2002年3月
    [24]連國珍,數位影像處理,儒林圖書有限公司,1992年9月 

    QR CODE
    :::