| 研究生: |
呂紹瑜 Shao-Yu Lu |
|---|---|
| 論文名稱: |
具有拓樸態之扶手椅型石墨烯奈米帶異質結構的電子傳輸特性 Electronic Transport Properties of Armchair Graphene Nanoribbons Heterostructures with Topological States |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 石墨烯奈米帶 、異質結構 、拓樸態 |
| 外文關鍵詞: | Graphene Nanoribbons, Heterostructures, Topological states |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討扶手椅石墨烯奈米帶(AGNRs)異質結構的電子傳輸特性,聚焦於 9-7-9 AGNR 異質結構中的拓撲態(Topological States)。研究發現,拓撲態與傳導帶及價電帶的子帶明顯隔離,確保電子主要在拓撲態內傳輸,降低連續態電子對傳輸的影響,同時提升拓撲態的穩健性。為了探討異質結構中拓樸態的電子傳輸特性,本研究在異質結構中引入結構空缺,並施加局部閘極電壓,分析其對拓樸態能階與傳輸行為的影響。結果顯示,拓樸態具有良好的穩健性,能在缺陷存在或外部電場調控下維持穩定傳輸。此外,透過調整結構參數與控制拓樸
態與電極之間的耦合強度,我們觀察到拓樸態間的電子躍遷強度與庫倫交互作用變化,進一步揭示拓樸態傳輸機制的細節。研究結果驗證了AGNR 異質結構中拓樸態在控制電子傳輸方面的穩定性,為未來應用於穩健型電子元件提供了理論依據與參考。
This study mainly investigates the electron transport properties of armchair graphene nanoribbons (AGNRs) heterostructures, focusing specifically on the topological states within a 9-7-9 AGNR heterostructure. It was found that the topological states are significantly isolated
from the subbands of the conduction and valence bands.This isolation ensures that electrons predominantly transport within the topological states, minimizing interference from bulk-state electrons and simultaneously enhancing the robustness of the topological states. To investigate the electronic transport properties of topological states in heterostructures, this study introduces structural vacancies and applies local gate voltages to a heterostructure. The effects on the energy levels and transport behavior of the topological states are analyzed. The results demonstrate that the topological states exhibit strong robustness, maintaining stable transport in the presence of defects and external electric field modulation. Moreover, Through structural design and modulation of the coupling characteristics between the topological states and the
electrodes, variations in the electron hopping strength and Coulomb interactions between the topological states are observed, further revealing the underlying transport mechanisms. These findings confirm the stability of topological states in AGNR heterostructures for controlling
electron transport and provide theoretical support and reference for the design of robust electronic devices in the future.
[1] Wang S Y, Kharche N, Girao E C, Feng X L, Muellen K, Meunier V, Fasel R and Ruffieux P, Quantum Dots in Graphene Nanoribbons, Nano. Lett. 17, 4277(2017).
[2]Dervishi E, Ji Z Q, Htoon H, Sykora M and Doorn S K, Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence, Nanoscale. 11, 16571(2019)
[3] Xue H R, Yang Y H and Zhang B L, Topological acoustics, Nat. Rev. Mater. 7, 974(2022).
[4] Wang H M, Wang H S, Ma C X, Chen L X, Jiang C X, Chen C, Xie X M, Li A P and Wang X R, Graphene nanoribbons for quantum electronics, Nat. Rev. Phys. 3, 791 (2021).
[5]Kuo D M T, Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons, Jpn. J. Appl. Phys. 61, 075001 (2022).
[6]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A, Electric field effect in atomically thin carbon films, SCIENCE. 306, 666 (2004).
[7]Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K, A roadmap for graphene, Nature. 490, 192 (2010).
[8]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).
[9]Han M Y, Özyilmaz B, Zhang Y B and Kim P, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007).
[10]Thouless D J, Kohmoto M and Dennijs M, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).
[11]Haldane F D M, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly, Phys. Rev. Lett. 61, 2015 (1988).
[12]Cao T, Zhao F Z and Louie S G, Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains, Phys. Rev. Lett. 119, 076401 (2017).
[13]Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F Z, Rodriguez H, Louie S G, Crommie M F and Fischer F R, Topological band engineering of graphene nanoribbons, Nature. 560, 204 (2018).
[14]Rizzo D J, Jiang J W, Joshi D, Veber G, Bronner C, Durr R A, Jacobse P H, Cao T, Kalayjian A, Rodriguez H, Butler P, Chen T, Louie S G, Fischer F R and Crommie M F, Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons, ACS Nano. 15, 20633(2021).
[15]Joost J P, Jauho A P and Bonitz M, Correlated Topological States in Graphene Nanoribbon Heterostructures, nano. lett. 19, 9045 (2019).
[16]Lee Y L, Zhao F Z, Cao T, Ihm J and Louie S G, Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, Z2 Invariants, and Junction States, Nano. Lett. 18, 7247(2018).
[17]Liu X M, Li G, Lipatov A, Sun T, Pour M M, Aluru N R, Lyding J W and Sinitskii A, Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization, Nano. Res. 13, 1713(2020).
[18]Ono K, Austing D G, Tokura Y and Tarucha S, Current rectification by Pauli exclusion in a weakly coupled double quantum dot system, Science. 297, 1313 (2002).
[19]Zhang H J, Lee G and Cho K, Thermal transport in graphene and effects of vacancy defects, Phys. Rev. B. 84, 115460 (2011).
[20]Haug H and Jauho A P, Quantum Kinetics in Transport and Optics of Semiconductors, Springer. Heidelberg. (1996).
[21] Kuo D M T and Chang Y C, Contact Effects on Ther moelectric Properties of Textured Graphene Nanoribbons, Nanomaterials. 12, 3357 (2022).
[22] Phùng T T, Peters R, Honecker A, de Laissardière G T and Vahedi J, Spin-caloritronic transport in hexagonal graphene nanoflakes, Phys. Rev. B. 102, 035160 (2020).
[23] Kuo D M T, Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays, AIP. Adv. 10, 045222 (2020).
[24]Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I, Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys. 9, 795 (2013).
[25]Su W P, Schrieffer J R and Heeger A J, Solitons in Polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
[26]Golor M, Koop C, Lang T C, Wessel S and Schmidt M J, Magnetic Correlations in Short and Narrow Graphene Armchair Nanoribbons, Phys. Rev. Lett. 111, 085504(2013).