跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭景中
Ching-Chung Cheng
論文名稱: 福衛一號及 DEMETER 衛星探測白天電離層四峰非遷移潮汐
Daytime Ionospheric Four-peak Nonmigrating Tides Probed by ROCSAT-1 and DEMETER
指導教授: 劉正彥
Jann-Yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 82
中文關鍵詞: 電離層大氣非遷移潮汐
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用福衛一號 ROCSAT-1 及 DEMETER(Detection of Electro Magnetic Emissions Transmitted from Earthquake Regions)衛星記錄的離子濃度、溫度以及速度,探討 1999 年至 2004 年高太陽活動時期(F10.7>104.9 sfu)以及 2005 年至2011 年低太陽活動時期(F10.7<104.9 sfu)白天電離層磁緯度±15°間之四峰非遷移潮汐(WN4)。電子與離子濃度高度正相關(R=0.96)之電漿的準電中性及電子(離子)濃度分別與電子及(離子)溫度高度負相關(R<-0.89)之庫倫碰撞效應驗證 DEMETER 及 ROCSAT-1 衛星電漿科學酬載量測之準確性及可信度。WN4 離子濃度與向上離子速度呈現正相關,且其相關性隨太陽活動增大而增強。反之,低太陽活動時期,兩者之相關係數接近零,說明其相關性並不顯著。此外,低太陽活動時期,WN4 之離子濃度與北向離子速度整體而言呈現負相關,但是於高太陽活動時期,此一相關性卻不存在。根據發電機理論及高太陽活動期之垂直向上速度計算,WN4 之相關東向電場值介於-0.11 和+0.11 mV/m 之間。


    The ion density, ion temperature, and ion velocity probed by ROCSAT-1 and DEMETER (Detection of Electro Magnetic Emissions Transmitted from Earthquake Regions) are used to examine the daytime wavenumber-4 (WN4 or four-peak) feature within magnetic latitude ±15˚ during the high solar activity period of 1999-2004 (F10.7>104.9 sfu) and low solar activity period of 2005-2011 (F10.7<104.9 sfu). The quasi-neutrality of the ion and electron density and the Coulomb collision effect of the ion (electron) density and ion (electron) temperature confirm that DEMETER and ROCSAT-1 data are reliable. During the high solar activity period, the correlation coefficient of WN4 variations between the ion density of δNi and upward ion velocity
    of δVz is a positive value and proportional to the solar activity. However, during the low solar activity period, the correlation coefficient between δNi and δVz is about zero and no clear relationship can be found. In contrast, δNi and WN4 variations in the northward ion velocity of δVx generally yield anti-correlation during the low solar
    activity period, and however no clear relationship can be found during high solar activity period. Based on the dynamo theory, the eastward electric field derived by
    δVz ranges from -0.11 to +0.11 mV/m in the high solar activity. This confirms that WN4 becomes prominent in daytime during high solar activity periods.

    Abstract...........................................................................................................................i 摘要................................................................................................................................ii Content......................................................................................................................... iii List of Figures...............................................................................................................iv Chapter 1. Introduction ..................................................................................................1 Chapter 2. Data Analysis and Observation ..................................................................17 2.1 ROCSAT-1.........................................................................................................18 2.2 DEMETER.........................................................................................................21 2.3 Light ion effects .................................................................................................32 Chapter 3. WN4 Feature Observation..........................................................................37 3.1 WN4 in 2000 and 2006 ......................................................................................38 3.2 Monthly variation...............................................................................................42 3.3 Solar activity variation .......................................................................................47 Chapter 4. Discussion and Conclusion ........................................................................58 4.1 Seasonal and solar activity variations of WN4 ..................................................58 4.2 Zonal electric fields related to WN4 ..................................................................60 4.3 Summary and Conclusion ..................................................................................65 Reference .....................................................................................................................67

    Reference
    Bankov L., R. Heelis, M. Parrot, J.-J. Berthelier, P. Marinov, and A. Vassileva (2009), WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data, Ann. Geophys., 27, 2893–2902 doi: 10.5194/angeo-27-2893-2009
    Bertheliera J. J., M. Godefroya, F. Leblanca, E. Serana, D. Pescharda, P. Gilberta, J. Artrub (2006), IAP, the thermal plasma analyzer on DEMETER, Planetary and
    Space Science, doi:10.1016/j.pss.2005.10.018
    England S. L., S. Maus, T. J. Immel, and S. B. Mende (2006), Longitudinal variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett.,
    VOL. 33, L21105, doi:10.1029/2006GL027465
    Fejer B. G., J. W. Jensen, and S. Y. Su (2008), Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., VOL.
    113, A05304, doi:10.1029/2007JA012801
    Forbes J. M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C. J. Mertens, and M. E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002 (2006), J. Geophys. Res., vol. 111, A10S06, doi:10.1029/2005JA011492
    68
    Hagan M. E. and Forbes J. M. (2002), Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J.
    Geophys. Res. Space Physics, VOL. 107, NO. D24, 4754, doi:10.1029/2001JD001236
    Hagan M. E. and Forbes J. M. (2003), Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res. Space Physics, VOL. 108, NO. A2, 1062, doi:10.1029/2002JA009466
    Hartman W. A. and Heelis R. A. (2007), Longitudinal variations in the equatorial vertical drift in the topside ionosphere, J. Geophys. Res. Space Physics, VOL. 112,
    A03305, doi:10.1029/2006JA011773
    Hawkins, J. M., and P. C. Anderson (2017), WN4 variability in DMSP ion densities across season, solar cycle, and local time, J. Geophys. Res. Space Physics, 122,
    8755–8769, doi:10.1002/ 2017JA024065.
    Immel T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., vol. 33, L15108, doi:10.1029/2006GL026161
    Kakinami Y., C. H. Lin, J. Y. Liu, M. Kamogawa, S. Watanabe, and M. Parrot (2011), Daytime longitudinal structures of electron density and temperature in the topside ionosphere observed by the Hinotori and DEMETER satellites, J. Geophys. Res. Space Physics, VOL. 116, A05316, doi:10.1029/2010JA015632
    Kil H., S.-J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K.-W. Min, and S.-Y. Su (2007), Longitudinal structure of the vertical E x B drift and ion density seen from ROCSAT-1, Geophys. Res. Lett., VOL. 34, L14110, doi:10.1029/2007GL030018
    Kil H., E. R. Talaat, S.-J. Oh, L. J. Paxton, S. L. England, and S.-Y. Su, Wave structures of the plasma density and vertical E × B drift in low-latitude F region (2008), J. Geophys. Res., vol. 113, A09312, doi:10.1029/2008JA013106
    Lin C. H., C. C. Hsiao, J. Y. Liu, and C. H. Liu (2007), Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure
    Lin C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. Paxton, T. W. Fang, and C. H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Threedimensional electron density structures (2007), Geophys. Res. Lett., vol. 34, L11112, doi:10.1029/2007GL029265
    Oberheide, J., J. M. Forbes, K. Ha¨usler, Q. Wu, and S. L. Bruinsma (2009), Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects, J. Geophys. Res., 114, D00I05, doi:10.1029/2009JD012388.
    Oberheide J., K. Shiokawa, S. Gurubaran, W. E Ward, H. Fujiwara, M. J Kosch, J. J Makela and H. Takahashi, The geospace response to variable inputs from the lower atmosphere: a review of the progress made by Task Group 4 of CAWSESII (2015), Progress in Earth and Planetary Science, DOI 10.1186/s40645-014-0031-4
    Onohara A. N., I. S. Batista, and P. P. Batista, Wavenumber-4 structures observed in the low-latitude ionosphere during low and high solar activity periods using FORMOSAT/COSMIC observations (2018), Ann. Geophys., 36, 459–471, https://doi.org/10.5194/angeo-36-459-2018
    Sagawa E., T. J. Immel, H. U. Frey, and S. B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV (2005), J. Geophys. Res., vol. 110, A11302, doi:10.1029/2004JA010848
    Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F-region vertical drift model, J. Geophys. Res., 104(A4), 6829–6842.
    Scherliess L., D. C. Thompson, and R. W. Schunk (2008), Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res. VOL. 113,
    A01311, doi:10.1029/2007JA012480
    W. Wan, L. Liu, X. Pi, M.-L. Zhang, B. Ning, J. Xiong, and F. Ding (2008), Wavenumber-4 patterns of the total electron content over the low latitude ionosphere, Geophys. Res. Lett., VOL. 35, L12104, doi:10.1029/2008GL033755

    QR CODE
    :::