| 研究生: |
羅濬辰 Chun-chen Lo |
|---|---|
| 論文名稱: |
鈉離子電池電化學與傳輸現象模擬分析 Numerical Analysis of Electrochemical and Transport Phenomenon in Sodium Ion Battery |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 234 |
| 中文關鍵詞: | 鈉離子電池 、一維傳輸現象 、二維傳輸現象 、熱與電化學耦合 、數值模擬 |
| 外文關鍵詞: | sodium-ion battery, one dimensional transport, two dimensional transport, coupled electrochemistry and heat transfer, numerical analysis |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用鈉離子電池與鋰離子電池質傳機制的共通點,建立一維等溫鈉離子電池模型、二維等溫鈉離子電池模型及二維熱與電化學耦合鈉離子電池模型,並從以往文獻的實驗參數範圍做各項物理性質的參數測試,探討各項參數在各模型下對於鈉離子電池定電流放電下的影響性。
本文建立的一維模型傳輸機制用來探討鈕扣型電池的傳輸現象,二維模型用來探討圓柱型電池的傳輸現象。本文的模型包含集電板、電極與隔膜,多孔電極模型預測則參考Newman學者所做的假設,利用許多球體結構堆疊排列作為電極多孔結構的模型。鈉離子的傳輸現象以擴散方式傳遞,電化學反應由多孔壁面鈉離子通量模擬嵌入或嵌出電極的濃度值。透過商用軟體COMSOL求解本研究的數值模型問題。
研究結果顯示電化學反應愈劇烈,正極還原反應消耗的鈉離子速率愈快,當其速率大於由負極產生並傳遞至正極之鈉離子速率時,正極還原反應將受到影響而不穩定,故達截止電壓所放出的電容量愈低。因此放電速率、電極擴散係數、電解液體積分率及導電率皆對電池電容量及穩定性有很大的關係。定電流放電下,負極參數改變較正極影響來大,由於放電過程中,負極需進行氧化反應產生鈉離子與電子,並傳輸至正極,若負極產生鈉離子速率降低或是傳遞速率降低,正極必定因鈉離子濃度降低導致還原反應受到影響。
螺旋纏繞式電池設計不但可節省電池體積,並聯的原理可以大幅提升電池之電容量,亦可承受較大的放電速率。電化學反應所產生的熱源包括焦耳熱與熵變化產生的熱,由於鈉離子電池能承受的放電速率比鋰離子電池低,在各項條件下,除非放電時間較長,否則鈉離子電池的溫度變化都較鋰離子電池小。
In this work, we consider the transport mechanism of sodium-ion battery, and build one dimensional, two dimensional models. With physical property values obtained from literature, we investigate the effects of various parameters on the electrical characteristics of sodium-ion batteries.
The one dimensional sodium-ion battery model is for the simulation of coin cell. Two dimension sodium-ion battery model is for the simulation of cylinder battery. Computational domain includes current collectors, electrodes and separator. Porous electrode is assumed to be made up of spherical particles. Sodium-ion are transported by diffusion, insertion and de-insertion processes. Numerical calculation are performed using the COMSOL software.
Results show that the more violent of the electrochemical reaction, the more rapidly sodium ion is consumed in the reduction reaction at the positive electrode. When the consumption rate is greater than the rate of sodium ion supply from the negative electrode, the reduction reaction at the positive electrode becomes unstable. Therefore, the discharge rate, electrode diffusion coefficient, the volume fraction of the electrolyte, and conductivity all affect the capacity and stability of a battery. For constant current discharge, properties of negative electrode have greater impact on battery performance than that of positive electrode. This is because sodium ions and electrons are generated at and supplied by the negative electrode.
Spiral wound battery design not only saves battery size, but also significantly enhance the capacity of batteries by the principle of parallel connection. In addition, it can withstand higher discharge rates. Heat released during a chemical reaction comes from the Joule heat and heat transfer associated with entropy change. Because the chemical reaction rate of a sodium ion battery is lower than that of a lithium ion battery, the heat release rate is smaller for the former. Therefore, the temperature change in a sodium-ion battery is smaller than that in a lithium-ion battery for the same discharging time.
[1] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X.
Ma, and G. Ceder, “Voltage, stability and diffusion barrier
differences between sodium-ion and lithium-ion intercalation
materials,” Energy Environ. Sci., vol. 4, no. 9, p. 3680, 2011.
[2] 黃可龍、王兆翔和劉素琴,「鋰離子電池原理與技術」五南,
初版,2010
[3] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic
Charge and Discharge of the Lithium / Polymer / Insertion Cell,”
vol. 140, no. 6, pp. 1526–1533, 1993.
[4] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and
Optimization of the Dual Lithium Ion Insertion Cell,” vol. 141, no.
1, 1994.
[5] N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo, M. Doyle, and J.
Newman, “Comparison of Modeling Predictions with Experimental
Data from Plastic Lithium Ion Cells,” vol. 143, no. 6, pp. 1890–
1903, 1996.
[6] G. Halpert, A. Laconti, J. Kosek, G. K. Surya, R. Darling, and J.
Newman, “Modeling a Porous Intercalation Electrode with Two
Characteristic Particle Sizes,” vol. 144, no. 12, 1997.
[7] S. Biallozor, “Modeling Side Reactions in Composite LiMn2O4
Electrodes,” vol. 145, no. 3, pp. 990–998, 1998.
68
[8] P. Ramadass, B. Haran, R. White, and B. N. Popov, “Mathematical
modeling of the capacity fade of Li-ion cells,” J. Power Sources,
vol. 123, no. 2, pp. 230–240, Sep. 2003.
[9] S. Kawano and F. Nishimura, “Numerical Analysis of Discharge
Characteristics in Lithium Ion Batteries Using Multiphase Fluids
Model,” Jpn. J. Appl. Phys., vol. 44, no. 6A, pp. 4218–4228, Jun.
2005.
[10] D. Danilov and P. H. L. Notten, “Mathematical modelling of ionic
transport in the electrolyte of Li-ion batteries,” Electrochim. Acta,
vol. 53, no. 17, pp. 5569–5578, Jul. 2008.
[11] V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M.
Arabandi, “Mathematical Model Reformulation for Lithium-Ion
Battery Simulations: Galvanostatic Boundary Conditions,” J.
Electrochem. Soc., vol. 156, no. 4, p. A260, 2009.
[12] S. Golmon, K. Maute, and M. L. Dunn, “Numerical modeling of
electrochemical–mechanical interactions in lithium polymer
batteries,” Comput. Struct., vol. 87, no. 23–24, pp. 1567–1579, Dec.
2009.
[13] E. Martínez-Rosas, R. Vasquez-Medrano, and A. Flores-
Tlacuahuac, “Modeling and simulation of lithium-ion batteries,”
Comput. Chem. Eng., vol. 35, no. 9, pp. 1937–1948, Sep. 2011.
[14] C. Y. Wang and V. Srinivasan, “Computational battery dynamics
(CBD)—electrochemical/thermal coupled modeling and multi-scale
modeling,” J. Power Sources, vol. 110, no. 2, pp. 364–376, Aug.
2002.
69
[15] P. M. Gomadam, R. E. White, and J. W. Weidner, “Modeling Heat
Conduction in Spiral Geometries,” J. Electrochem. Soc., vol. 150,
no. 10, p. A1339, 2003.
[16] S.-C. Chen, Y.-Y. Wang, and C.-C. Wan, “Thermal Analysis of
Spirally Wound Lithium Batteries,” J. Electrochem. Soc., vol. 153,
no. 4, p. A637, 2006.
[17] X. Zhang, “Thermal analysis of a cylindrical lithium-ion battery,”
Electrochim. Acta, vol. 56, no. 3, pp. 1246–1255, Jan. 2011.
[18] Dong H. J. and Seung M. B., “Thermal modeling of cylindrical
lithium ion battery during discharge cycle,” Energy Convers.
Manag., vol. 52, no. 8–9, pp. 2973–2981, Aug. 2011.
[19] M. Yazdanpour, P. Taheri, and M. Bahrami, “A Computationally-
Effective Thermal Model for Spirally Wound Nickel-Metal Hydride
Batteries,” J. Electrochem. Soc., vol. 161, no. 1, pp. A109–A117,
Nov. 2013.
[20] T. R. Jow, L. W. Shacklette, M. Maxfield, and D. Vernick, “OF
THE The Role of Conductive Polymers in Alkali-Metal Secondary
Electrodes,” pp. 1730–1733, 1987.
[21] R. R. Zhao, Y. L. Cao, X. P. Ai, and H. X. Yang, “Reversible Li
and Na storage behaviors of perylenetetracarboxylates as organic
anodes for Li- and Na-ion batteries,” J. Electroanal. Chem., vol.
688, pp. 93–97, Jan. 2013.
[22] D. a. Stevens and J. R. Dahn, “High Capacity Anode Materials for
Rechargeable Sodium-Ion Batteries,” J. Electrochem. Soc., vol.
147, no. 4, p. 1271, 2000.
70
[23] S. H. Park, C. W. Moore, P. a. Kohl, and J. Winnick, “A Study of
Copper as a Cathode Material for an Ambient Temperature Sodium
Ion Battery,” J. Electrochem. Soc., vol. 148, no. 12, p. A1346,
2001.
[24] P. Thomas, D. Billaud, I. Nancy, and B. P. Vandoeu,
“Electrochemical insertion of sodium into hard carbons,” vol. 47,
pp. 3303–3307, 2002.
[25] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-
González, and T. Rojo, “Na-ion batteries, recent advances and
present challenges to become low cost energy storage systems,”
Energy Environ. Sci., vol. 5, no. 3, p. 5884, 2012.
[26] Y. Zhu, Y. Xu, Y. Liu, C. Luo, and C. Wang, “Comparison of
electrochemical performances of olivine NaFePO4 in sodium-ion
batteries and olivine LiFePO4 in lithium-ion batteries.,” Nanoscale,
vol. 5, no. 2, pp. 780–7, Jan. 2013.
[27] B. L. Ellis and L. F. Nazar, “Sodium and sodium-ion energy storage
batteries,” Curr. Opin. Solid State Mater. Sci., vol. 16, no. 4, pp.
168–177, Aug. 2012.
[28] S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, and K. Kang, “Electrode
Materials for Rechargeable Sodium-Ion Batteries: Potential
Alternatives to Current Lithium-Ion Batteries,” Adv. Energy Mater.,
vol. 2, no. 7, pp. 710–721, Jul. 2012.
[29] J. Xu, D. H. Lee, and Y. S. Meng, “Recent Advances in Sodium
Intercalation Positive Electrode Materials for Sodium Ion
71
Batteries,” Funct. Mater. Lett., vol. 06, no. 01, p. 1330001, Feb.
2013.
[30] M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, “Sodium-Ion
Batteries,” Adv. Funct. Mater., vol. 23, no. 8, pp. 947–958, Feb.
2013.
[31] J. W. Fergus, “Ion transport in sodium ion conducting solid
electrolytes,” Solid State Ionics, vol. 227, pp. 102–112, Oct. 2012.
[32] D. J. Kim, R. Ponraj, A. G. Kannan, H.-W. Lee, R. Fathi, R. Ruffo,
C. M. Mari, and D. K. Kim, “Diffusion behavior of sodium ions in
Na0.44MnO2 in aqueous and non-aqueous electrolytes,” J. Power
Sources, vol. 244, pp. 758–763, Dec. 2013.
[33] R. Ruffo, R. Fathi, D. J. Kim, Y. H. Jung, C. M. Mari, and D. K.
Kim, “Impedance analysis of Na0.44MnO2 positive electrode for
reversible sodium batteries in organic electrolyte,” Electrochim.
Acta, vol. 108, pp. 575–582, Oct. 2013.
[34] 王勖成,「有限單元法」,清華大學出版社, 2003
[35] Phillipe G. Ciarlet, “The finite element method for elliptic
problems, ” North-Holland, Amsterdam, 1978.
[36] Charles Hirsch, “Numerical Computation of Internal and External
Flows, ” Volume 1, Fundamentals of Numerical Discretization, July
1989
[37] Y. Kim, Y. Park, A. Choi, N.-S. Choi, J. Kim, J. Lee, J. H. Ryu, S.
M. Oh, and K. T. Lee, “An amorphous red phosphorus/carbon
72
composite as a promising anode material for sodium ion batteries.,”
Adv. Mater., vol. 25, no. 22, pp. 3045–9, Jun. 2013.
[38] A. Bhide, J. Hofmann, A. K. Dürr, J. Janek, and P. Adelhelm,
“Electrochemical stability of non-aqueous electrolytes for sodiumion
batteries and their compatibility with Na(0.7)CoO2.,” Phys.
Chem. Chem. Phys., vol. 16, no. 5, pp. 1987–98, Feb. 2014.
[39] G. Shu and F. Chou, “Sodium-ion diffusion and ordering in singlecrystal
P2-NaxCoO2,” Phys. Rev. B, vol. 78, no. 5, p. 052101, Aug.
2008.
[40] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V Saraf, Z.
Yang, and J. Liu, “Reversible sodium ion insertion in single
crystalline manganese oxide nanowires with long cycle life.,” Adv.
Mater., vol. 23, no. 28, pp. 3155–60, Jul. 2011.
[41] N. Wongittharom, T.-C. Lee, C.-H. Wang, Y.-C. Wang, and J.-K.
Chang, “Electrochemical performance of Na/NaFePO4 sodium-ion
batteries with ionic liquid electrolytes,” J. Mater. Chem. A, vol. 2,
no. 16, p. 5655, 2014.