| 研究生: |
朱均勗 CHUN-CHU CHU |
|---|---|
| 論文名稱: |
具阻尼含洞複合薄板之振動分析 |
| 指導教授: |
王有任
Yen-Hsien Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 振動分析 、複合薄板 |
| 外文關鍵詞: | composite material, vibration analysis |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本篇文章乃是在於探討四邊均為簡支邊界之複合材料薄板,當其板面挖有多個不同形狀之孔洞,並考慮阻尼效應對其運動方程式之建立及自由振動頻率值變化之研究。
對於過去文獻及其他學長們的論文中,雖然也有使用有限元素法或有限差分等數值方法,來處理類似挖有孔洞的問題,但多數都集中在均質材料板、或者是孔洞數不多、孔洞形狀只侷限於單一形狀…等。
本篇主要是對『Ectoplasm』方法來作研究,並應用在複合材料上,概念為貼一層很薄的薄膜,以變厚度模擬孔洞部分,如此一來可視為處理板為變厚度的振動問題。
本文探討了許多不同形狀之板孔、不同孔洞大小、不同孔洞個數、不同纖維層積方向、不同層合板層數對複合材料孔板自然頻率之影響,並考慮阻尼效應,及加入激振力對不同孔洞板作響應及頻譜分析,以了解含洞複合材料板之振動特性。
參考文獻:
【1】 Pagano, N.J., Stress Fields in Composite Laminates, Air Force materials
Laboratory Report AFML-TR-77-114,August, 1997.
【2】 Pister, K.S., and Dong, S.B., “Elastic Bending of Layered Plates,”
ASCE, J. Engng. Mech. Div., 85, pp.1-10, 1959.
【3】 Mindlin, R.D., “Influence of Rotatory Inertia and shear on Flerural
Motions of Isotropic ,Elastic Plates,” J. Appl. Mech., 18, pp.31-38,
1951.
【4】 Yang, P.C., Norris, C.H., and Stavsky, Y.,”Elastic Wave Propagation in
Heterogeneous Plates,” Int. J. Solids Struct.,2, pp.665-684, 1966.
【5】 Whitney, J.M., and Pagano, N.J., “Shear Deformation in Heterogeneous
Anidotropic Plates,”J. Appl. Mech., Trans. ASME, 92, PP. 1031-1036, 1970.
【6】 pipes, R.B., and Pagano, N. J., “Interlaminar Stresses in Composite
Laminates Under Uniform Axial Extension,”J. Composite Materials,4,
pp.538-548, 1970.
【7】 Putcha, N.S., and Reddy, J. N., “A Mixed Shear Flexible Finite Element
for the analysis of Laminated Plates,” Comp. Meths. Appl. Mech. Engng.,
44, pp. 213-227. 1984.
【8】 Reddy, J.B., “A Simple Higher-Order Theory for Laminated Composite
Plates,”J. Appl. Mecg., 51,pp.745-752, 1984.
【9】 Piam, .T.H.H., “Derivation of Element Stiffness Matrices by Assumed
Stress Distributions,”AIAA J., 2, PP. 1333-1336, .1964.
【10】Mau, S.T., Tong, P., and Pian, T.H.H., “Finite Element Solutions for
Laminated Thick Plates,” J, Composite Materialds, 6, pp. 304-311, 1972.
【11】Spilker, R.L., “A Hybrid-Sress Finite-Element Formulation for Thick
Multilayer Laminates,” Comp. Struct., 11, pp. 507-514, 1980.
【12】Spilker, R.L., and Munir, N.I., “Comparison of Hybrid-Stress Element
Through-Thickness Distributions Corresponding to a High-Order plate
Theory,” Comp. Struct., 11, pp. 579-586, 1980.
【13】Spilker, R.L., “Hybrid-Stress Eight-Node Elements for Thin and Thick
Multilayer Laminated Plates.”Int. j. Num. Meths. Engng., 18, PP. 801-
828, 1982.
【14】Pillasch, D.W., Majerus, J.N., and Zak, A.R.,”Dynamic Finite Element
Model for Laminated Structures,” Comp. Struct., 16, pp. 449-445, 1983.
【15】Putcha, N.S., and Reddy, J.N., “On Dynamics of Laminated Anisotropic
Plates Using a Refined Mixed Plate Element,” ASME Winter Annual
Meeting,New Orleans, LA, PP. 161-169, 1984.
【16】Tong, P.,Mau,S.T., and Pian, T.H.H., “Derivation of Geometric Stiffness
and Mass Matrices for Finite Element Hybrid Models,” Int. j.Solids
Struct.,10,pp. 919-932, 1974.
【17】Liou, W. J., “Stress Analysis of Impacted Laminated Composite Plates
with A Hybrid Stress Finite Element Method”, dissertation of Ph.D,
University of Florida, 1986.
【18】O.Beslin,J.L.Guyader 1995 Journal of Sound and Vibration 191,935-954.
“The use of an “Ectoplasm” to free vibration of plates with cut-outs”.
【19】P.A.A.Laura,R.H.Gutierrez and R.E.Rossi 1996 Journal of Sound and
Vibration 201,636-640. “Vibration of rectangular membranes and plates
with rectangular holes with fixed boundaries”.
【20】K.Sivakumar,N.G.R.Iyenger 1998 Journal of Sound and Vibration 221,443-
470. “Free vibration of laminated composite plates with cutout”.
【21】M.Huang 1999 Journal of Sound and Vibration 226,769-786. “Free vibration
analysis of rectangular plates with variously-shaped holes”.
【22】H.A.Larrondo and R.E.Rossi 2000 Journal of Sound and Vibration 224,738-
745. “Vibration of simply supported rectangular plates with varying
thickness and same aspect ratio cutouts”.
【23】R.A. Frazer,W.J. Duncan,and A.R. Collar,p.289 “Elementary Matries”.