跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱均勗
CHUN-CHU CHU
論文名稱: 具阻尼含洞複合薄板之振動分析
指導教授: 王有任
Yen-Hsien Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 89
中文關鍵詞: 振動分析複合薄板
外文關鍵詞: composite material, vibration analysis
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本篇文章乃是在於探討四邊均為簡支邊界之複合材料薄板,當其板面挖有多個不同形狀之孔洞,並考慮阻尼效應對其運動方程式之建立及自由振動頻率值變化之研究。
    對於過去文獻及其他學長們的論文中,雖然也有使用有限元素法或有限差分等數值方法,來處理類似挖有孔洞的問題,但多數都集中在均質材料板、或者是孔洞數不多、孔洞形狀只侷限於單一形狀…等。
    本篇主要是對『Ectoplasm』方法來作研究,並應用在複合材料上,概念為貼一層很薄的薄膜,以變厚度模擬孔洞部分,如此一來可視為處理板為變厚度的振動問題。
    本文探討了許多不同形狀之板孔、不同孔洞大小、不同孔洞個數、不同纖維層積方向、不同層合板層數對複合材料孔板自然頻率之影響,並考慮阻尼效應,及加入激振力對不同孔洞板作響應及頻譜分析,以了解含洞複合材料板之振動特性。


    目錄 摘要………………………………...……………………i 目錄……………………………………………………..ii 表目錄……………………………………………….…iv 圖目錄………………………………………………….vi 符號說明……………………………………………….xi 第一章 緒 論……………………………………………………….1 § 1-1研究動機………………………………………………1 § 1-2 文獻回顧………………………………………………3 第二章 複合材料板之基本理論……………………………...8 § 2-1 基本假設…………………………………………….9 § 2-2 位移、應力、應變關係式………………………….9 § 2-3 複合材料板總勢能U之推導………………………12 § 2-4 推導有洞複合材料板之漢米爾頓方程式…………13 § 2-5 變分漢米爾頓方程式………………………………16 第三章 推導板之自然頻率及動態響應…………………21 § 3-1 推導系統之自然頻率………………………………21 § 3-2 推導系統之動態響應………………………………23 第四章 數值結果與比較………………………………………26 § 4-1 ANSYS 有限元素法套裝軟體之簡介……………27 § 4-2 ANSYS 數值解與本文結果之比較………………29 § 4-3 改變孔洞大小或孔洞數不同之頻率比較…………31 § 4-4 改變纖維角度與層數對頻率之影響………………33 § 4-5 模態分析……………………………………………34 § 4-6 激振力激振時在不同節點之響應與頻譜分析……35 § 4-7 激振力激振時不同阻尼係數之響應與頻譜分析…36 § 4-8 其他激振力激振之響應與頻譜分析………………38 第五章 結論與未來發展………………………………………40 § 5-1 結論………………………………………………...40 § 5-2 未來建議……………………………………………44 參考文獻…………………………………………………..…………86

    參考文獻:
    【1】 Pagano, N.J., Stress Fields in Composite Laminates, Air Force materials
    Laboratory Report AFML-TR-77-114,August, 1997.
    【2】 Pister, K.S., and Dong, S.B., “Elastic Bending of Layered Plates,”
    ASCE, J. Engng. Mech. Div., 85, pp.1-10, 1959.
    【3】 Mindlin, R.D., “Influence of Rotatory Inertia and shear on Flerural
    Motions of Isotropic ,Elastic Plates,” J. Appl. Mech., 18, pp.31-38,
    1951.
    【4】 Yang, P.C., Norris, C.H., and Stavsky, Y.,”Elastic Wave Propagation in
    Heterogeneous Plates,” Int. J. Solids Struct.,2, pp.665-684, 1966.
    【5】 Whitney, J.M., and Pagano, N.J., “Shear Deformation in Heterogeneous
    Anidotropic Plates,”J. Appl. Mech., Trans. ASME, 92, PP. 1031-1036, 1970.
    【6】 pipes, R.B., and Pagano, N. J., “Interlaminar Stresses in Composite
    Laminates Under Uniform Axial Extension,”J. Composite Materials,4,
    pp.538-548, 1970.
    【7】 Putcha, N.S., and Reddy, J. N., “A Mixed Shear Flexible Finite Element
    for the analysis of Laminated Plates,” Comp. Meths. Appl. Mech. Engng.,
    44, pp. 213-227. 1984.
    【8】 Reddy, J.B., “A Simple Higher-Order Theory for Laminated Composite
    Plates,”J. Appl. Mecg., 51,pp.745-752, 1984.
    【9】 Piam, .T.H.H., “Derivation of Element Stiffness Matrices by Assumed
    Stress Distributions,”AIAA J., 2, PP. 1333-1336, .1964.
    【10】Mau, S.T., Tong, P., and Pian, T.H.H., “Finite Element Solutions for
    Laminated Thick Plates,” J, Composite Materialds, 6, pp. 304-311, 1972.
    【11】Spilker, R.L., “A Hybrid-Sress Finite-Element Formulation for Thick
    Multilayer Laminates,” Comp. Struct., 11, pp. 507-514, 1980.
    【12】Spilker, R.L., and Munir, N.I., “Comparison of Hybrid-Stress Element
    Through-Thickness Distributions Corresponding to a High-Order plate
    Theory,” Comp. Struct., 11, pp. 579-586, 1980.
    【13】Spilker, R.L., “Hybrid-Stress Eight-Node Elements for Thin and Thick
    Multilayer Laminated Plates.”Int. j. Num. Meths. Engng., 18, PP. 801-
    828, 1982.
    【14】Pillasch, D.W., Majerus, J.N., and Zak, A.R.,”Dynamic Finite Element
    Model for Laminated Structures,” Comp. Struct., 16, pp. 449-445, 1983.
    【15】Putcha, N.S., and Reddy, J.N., “On Dynamics of Laminated Anisotropic
    Plates Using a Refined Mixed Plate Element,” ASME Winter Annual
    Meeting,New Orleans, LA, PP. 161-169, 1984.
    【16】Tong, P.,Mau,S.T., and Pian, T.H.H., “Derivation of Geometric Stiffness
    and Mass Matrices for Finite Element Hybrid Models,” Int. j.Solids
    Struct.,10,pp. 919-932, 1974.
    【17】Liou, W. J., “Stress Analysis of Impacted Laminated Composite Plates
    with A Hybrid Stress Finite Element Method”, dissertation of Ph.D,
    University of Florida, 1986.
    【18】O.Beslin,J.L.Guyader 1995 Journal of Sound and Vibration 191,935-954.
    “The use of an “Ectoplasm” to free vibration of plates with cut-outs”.
    【19】P.A.A.Laura,R.H.Gutierrez and R.E.Rossi 1996 Journal of Sound and
    Vibration 201,636-640. “Vibration of rectangular membranes and plates
    with rectangular holes with fixed boundaries”.
    【20】K.Sivakumar,N.G.R.Iyenger 1998 Journal of Sound and Vibration 221,443-
    470. “Free vibration of laminated composite plates with cutout”.
    【21】M.Huang 1999 Journal of Sound and Vibration 226,769-786. “Free vibration
    analysis of rectangular plates with variously-shaped holes”.
    【22】H.A.Larrondo and R.E.Rossi 2000 Journal of Sound and Vibration 224,738-
    745. “Vibration of simply supported rectangular plates with varying
    thickness and same aspect ratio cutouts”.
    【23】R.A. Frazer,W.J. Duncan,and A.R. Collar,p.289 “Elementary Matries”.

    QR CODE
    :::