跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯震宇
Jhen-yu Hou
論文名稱: 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
Design and Implementation of Turbo Decoder for 3GPP-LTE Advanced Systems
指導教授: 蔡佩芸
Pei-yun Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 編碼渦輪碼錯誤碼
外文關鍵詞: 3GPP LTE, Turbo code
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們根據3GPP LTE-A的系統通道編碼傳輸規格,設計Radix-4架構高並行渦輪解碼器。在解碼時序上採用預處理滑窗解碼流程,來降低所需儲存的資料量並且增快約一倍的解碼速度。在解碼效能上,我們使用邊界資訊交換(NII)機制來改善因並行架構所造成的解碼性能損失。我們提出更簡單明瞭的解碼器與記憶體之間的資料交換網路,其中降低簡化交換網路所需要的控制訊號。除此之外,在解碼器的主要構成元件加法挑選補償器中,我們比較了各種實現的架構,並設計出在解碼效能與硬體面積兩者取捨中最為合理的組合。在硬體實現上,對硬體元件的量化與解碼性能的取捨做最佳化,達到最小面積的硬體與最接近演算法的解碼效能,我們設計實作出的解碼器跟演算法相比只有0.1dB的解碼效能損失,最後解碼器的硬體合成結果顯示操作頻率也能跟上3GPP LTE-A的傳輸規格限制。


    In this thesis, we design the Turbo decoder applies to channel coding system for the 3rd Generation Partnership Project (3GPP) specification. The decoder implements the MLMAP algorithm with high radix and high parallel architecture. In timing chart of decoding, we utilize the sliding-window and warm-up scheme to improve the decoding period and performance. We utilize the NII scheme to compensate the performance loss caused by the high parallel architecture design. We propose the simpler and faster switch network than previous literatures. The memory area is reduced by reducing the number of memory blocks. The CSO unit is an important component of MLMAP implementation and we choose one structure as our best tradeoff from few different CSO structures. The proposed Turbo decoder can achieve operation frequency 425 MHz and throughput 950Mb/s per MLMAP decoder.

    目錄 目錄 iv 圖示目錄 vi 表格目錄 ix 第一章 緒論 1 1.1 簡介 1 1.2 動機 1 1.3 論文組織 2 第二章 渦輪碼 3 2.1 LTE的渦輪碼編碼 3 2.1.1 LTE的渦輪編碼狀態 6 2.1.2 LTE的交錯器 10 2.2 渦輪碼解碼 12 2.2.1 最大可能性對數比值 13 2.2.2 最大事後機率演算法 14 第三章 高產出的解碼器設計 18 3.1 最大對數事後機率演算法 18 3.2 預處理滑窗解碼流程時序 22 3.3 高基數與高並行架構 26 3.3.1 高基數架構 26 3.3.2 Radix-4架構的最大對數演算法 29 3.3.3 高並行架構 32 3.4 高並行運算架構的效能補償 36 第四章 解碼硬體的改良 42 4.1 加法比較挑選補償器 42 4.2 交錯器 48 4.2.1 記憶體衝突 48 4.2.2 二次置換多項式交錯器 50 4.2.3 記憶體設計 53 4.3 選擇交換網路 54 4.3.1 排序路由網路 55 4.3.2 旋轉器網路 56 4.3.3 所提出之交換網路設計 58 4.4 訊雜比敏感度 62 第五章 硬體實現 65 5.1 狀態運算元件 66 5.1.1 補償挑選器 67 5.1.2 補償元件 69 5.1.3 範圍偏移元件 72 5.2 分支運算單位 74 5.3 概比率運算元件 75 5.4 位址產生器 79 5.5 選擇交換網路 80 5.6 解碼器控制單元 83 5.7 硬體設計改良 85 5.7.1 硬體管線設計 85 5.7.2 硬體時序重整設計 86 5.8 硬體實作比較 89 第六章 結論 90 參考文獻 91

    [1] Berrou C, Glavieux A, Thitimajshima P. “Near Shannon limit error correcting coding and decoding: Turbo codes.” in Proc. IEEE ICC 1993[C], Geneva, Switzerland, 1993: 1064-1070.
    [2] 3GPP TS 25.212 V7.3.0 (2007-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiplexing and channel coding (FDD) (Release 7).
    [3] 3GPP2 C.S0002-A Version 6.0: Physical layer Standard for cdma2000 Spread Spectrum Systems Release A. 2002.2.
    [4] 3GPP TS 25.222 V7.3.0 (2007-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiplexing and channel coding (TDD) (Release 7).
    [5] R1063137, Ericsson. Quadratic Permutation Polynomial Interleavers for LTE Turbo Coding. 3GPP TSG RAN WG1 #47, Riga, Latvia, 06-10 November 2006.
    [6] J. Sun and O. Y. Takeshita. “Interleavers for Turbo codes using permutation polynomials over integer rings.” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp.101-119, Jan.2005.
    [7] J. Ryu and O. Y. Takeshita. “On quadratic inverses for quadratic permutation polynomials over integer rings.” IEEE Trans. Inform. Theory, vol 52, no. 3, pp. 1254-1260, Mar. 2006.
    [8] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. “Optimal decoding of linear codes for minimizing symbol error rate (Corresp.).” IEEE Trans. Inf. Theory, vol. 20, pp. 284-287, 1974.
    [9] P. Robertson, E. Villebrun, and P. Hoeher. “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain.” in Proc. IEEE Int. Conf. Commun. (ICC), vol.2, 1995, pp. 10009-1013.
    [10] A. J. viterbi. “An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes.” IEEE J. Sel. Areas Commun, vol. 16, pp.260-264, 1998.
    [11] J. Dielissen and J. Huiskens. “State Vector Reduction for Initialization of Sliding Windows MAP,” in Proc. 2nd International Symposium on Turbo Codes & Related Topics, Brest, France, Sep. 2000, pp. 387–390.
    [12] C.-C. Wong and H.-C. Chang, “Reconfigurable Turbo Decoder with Parallel Architecture for 3GPP LTE System.” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, vol. 57, no. 7, July 2010.
    [13] E. Boutillon, W. Gross, and P. Gulak. “VLSI architectures for the MAP algorithm.” IEEE Trans. Commun., vol. 51, no. 2, pp. 175–185, Feb. 2003.
    [14] G. Fettweis and H. Meyr. “Parallel Viterbi algorithm implementation: Breaking the ACS bottleneck.” IEEE Trans. Commun., vol. 37, pp.785–790, Aug. 1989.
    [15] M. Bickerstaff, L. Davis, C. Thomas, D. Garret, and C. Nicol. “A 24Mb/s radix-4 LogMAP Turbo decoder for 3 GPP-HSDPA mobile wireless.” in IEEE ISSCC Dig. Tech. Papers, 2003, pp. 150–151.
    [16] T. Miyauchi, K. Yamamoto, and T. Yokokawa. “High-performance programmable SISO decoder VLSI implementation for decoding Turbo codes.” in Proc. IEEE Global Telecommun. Conf., 2001, pp. 305–309.
    [17] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship. “APP and QPP Interleavers for LTE Turbo Coding.” in Proc. IEEE Wireless Commun. And Networking Conf. (WCNC), 2008, pp. 1032-1037.
    [18] Studer, C., Benkeser, C., Belffanti, S., Quiting Huang. “A 390Mbs 3.57mm2 3GPP-LTE turbo decoder ASIC in 0.13um CMOS.” Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International.
    [19] C.-C. Wong, Y.-Yu Lee, H.-C. Chang. “A 188-size 2.1mm2 Reconfigurable Turbo Decoder Chip with Parallel Architecture for 3GPP LTE System.” Symp. On VLSI Circuits Dig. Tech. Papers, pp. 288-289, June 2009.
    [20] Ji-Hoon Kim, In-Cheol Park. “A Unified Parallel Radix-4 Turbo Decoder for Mobile WiMAX and 3GPP-LTE.” Proc. IEEE CICC, pp. 487-490, Sept. 2009.
    [21] IEEE Naresh R. Shanbhag Senior Member IEEE Seok-Jun Lee, Member and IEEE Andrew C. Singer, Member. “A 285-MHz pipelined MAP decoder in 0.18-μm CMOS.” IEEE journal of solid-state circuits, 40(8):1718-1725, AU-GUST 2005.
    [22] Fan Ye Cheng Zhang, Xuejing Wang and Junyan Ren. “A 400Mbs Radix-4 MAP Decoder with Fast Recursion Architecture.” Advanced Communication Technology, pages 17-20, Feb 2008.
    [23] Keshab K. Parhi. “VLSI DIGITAL SIGNAL PROCESSING SYSTEMS DESIGN AND IMPLEMENTATION.” , Wiley Interscience, 1999.

    QR CODE
    :::