| 研究生: |
李仁傑 Jen-Chieh Li |
|---|---|
| 論文名稱: |
12英吋矽晶圓化學氣相沉積矽磊晶製程熱輻射加熱系統之數值分析 Numerical Analysis of Heat Radiation Heating System for 12-inch Silicon Wafer Chemical Vapor Deposition Silicon Epitaxial Process |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 矽磊晶薄膜生長 、熱輻射加熱 、常壓化學氣相沉積 |
| 外文關鍵詞: | Silicon epitaxial film, Radiation heater, Atmospheric pressure chemical vapor deposition |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
常壓化學氣相沉積矽磊晶反應腔體內的溫度分布,對於磊晶製程非常重要,本研究針對反應腔體加熱系統進行改善分析。磊晶生長過程藉由上下兩組燈泡模組透過熱輻射將熱量傳遞至晶圓表面,這些模組包括燈絲加熱器、黃金反射罩、晶圓載盤、石英集熱環和冷卻系統等,本文藉由建立熱傳數值模型分析此磊晶反應腔體內傳熱過程,進而改善溫場分布來得到較佳的薄膜生長均勻性。
當矽磊晶薄膜在生長時,由於載盤上矽晶圓的溫場對於磊晶生長有相當大的影響,而影響矽晶圓溫場的因素,包括腔體內傳熱機制與腔體幾何結構。本研究先建立三維數值模型,再以數值模擬方式求出磊晶腔體及晶圓表面溫度分布,依製程溫度約為1050-1150℃,求得輸入功率。溫場的分布,將會影響矽磊晶薄膜生長輪廓、薄膜沉積速率與平坦度。溫場分布受到黃金反射罩、集熱環的幾何形狀和位置及上下加熱器輸入功率比的影響,利用上述方式來控制晶圓表面區域溫度找出適合矽磊晶生長之溫場以提高薄膜生長均勻性。本研究將提出加熱系統內改善的腔體結構如黃金反射罩與石英集熱環等。
It is known that temperature distribution in the silicon epitaxial process is meaningful to the atmospheric pressure chemical vapor deposition(APCVD) system. This study is to develop and optimize the silicon epitaxial heating system. The epitaxial growth process transfers heat to the wafer surface through thermal radiation by the lamp modules located in the chamber. The chamber consists of many different components, including filament heaters, golden reflectors, susceptor, quartz ring and cooling system, etc. This study analyzes the heat transfer process of the silicon epitaxial deposition chamber by establishing the numerical heat transfer model, and then improves the temperature field distribution to obtain better film growth uniformity.
When the silicon epitaxial thin film is growing, the temperature field of the wafer on the substrate has a considerable influence on the epitaxial growth, and the temperature field is affected by the heat transfer mechanism in the chamber and the geometry of the chamber. In this study, the three-dimensional numerical model was first established, and then the temperature distribution of the epitaxial cavity and the wafer surface is obtained by numerical simulation. The input power is obtained by the real process temperature which is about 1050-1150°C. The distribution of the temperature field will affect the silicon epitaxial film growth profile, film deposition rate and flatness. The temperature field distribution is affected by the geometry and position of the golden reflectors, quartz ring, and the input power ratio of the upper and lower heaters. The above method is used to control the temperature of different area on the wafer surface in order to acquire a temperature field suitable for silicon epitaxial growth to improve film growth uniformity. This study will propose improved chamber structures in the heating system, such as golden reflectors and quartz ring.
[1] K. F. Jensen and W. Kern, in Thin Film Processes II(J. L. Vossen and W.
Kern, Eds.), Academic Press, New York, 1991.
[2] P. B. Barna, Diagnostics and Applications of Thin Films(L. Eckertova and T. Ruzicka, Eds.), Inst. Phy.Publ., Bristol, 1992.
[3] J. M. Charig and B. A. Joyce, Epitaxial growth of silicon by hydrogen reduction of SiHCI3 onto silicon substrates. Journal of The Electrochemical Society, Vol. 109, No. 10, pp.957-962, 1962.
[4] H. Habuka, M. Katayama, M. Shimada, and K. Okuyama, “Numerical evaluation of silicon-thin film growth from SiHCl3-H2 gas mixture in a horizontal chemical vapor deposition reactor”. Japanese Journal of Applied Physics, 33(Part 1, No. 4A), pp.1977-1985, 1994.
[5] H. Habuka, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada, and K. Okuyama, “Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure”, Journal of Crystal Growth, 169(1), pp.61-72, 1996.
[6] H. Habuka, M. Katayama, M. Shimada and K. Okuyama, “Nonlinear increase in silicon epitaxial growth rate in a SiHCl3-H2 system under atmospheric pressure”, Journal of Crystal Growth, 182, pp.352-362, 1997.
[7] A. Segal, A. Galyukov, A. Kondratyev, A. Sid’ko, S. Karpov, Y. Makarov, W. Siebert and P. Storck, “Comparison of silicon epitaxial growth on the 200-mm and 300-mm wafers from trichlorosilane in centura reactors”, Microelectronic Engineering, 56(1-2), pp.93-98, 2001.
[8] H. Habuka, “Flatness deterioration of silicon epitaxial film formed using horizontal single-wafer epitaxial reactor”, Japanese Journal of Applied Physics, 40(Part 1, No. 10), pp.6041-6044, 2001.
[9] A. Veneroni, D. Moscatelli and M. Masi, “Modeling of large-scale horizontal reactor for silicon epitaxy”, Journal of Crystal Growth, 275, pp.289-293, 2005.
[10] S. Jeon, H. Park, , H. Oh, and W. Kim, “Computational Modeling of a Chemical Vapor Deposition Reactor for Epitaxial Silicon Formation”, Science of Advanced Materials, 8(3), pp.578-582, 2016.
[11] 王士賓,「300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析」,國立中央大學,碩士論文,民國一百零八年。
[12] 田民波,薄膜技術與薄膜材料,五南圖書出版公司,台北,民國一百零一年。
[13] S. Wenski, “Method for producing epitaxially coated silicon wafers”, Google Patents, US8372298B2, 2019.
[14] S. Kommu, G. Wilson, and B. Khomami, “A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors”, Journal of The Electrochemical Society, 147(4), pp.1538-1550, 2000.
[15] H. Habuka, S. Fukaya, A. Sawada, T. Takeuchi, and M. Aihara. “Flatness deterioration of silicon epitaxial film formed in a horizontal single-wafer epitaxial reactor II”, Japanese Journal of Applied Physics, 41(Part 1, No. 9), pp.5692-5696, 2002.
[16] H. Habuka, S. Fukaya, A. Sawada, T. Takeuchi, and M. Aihara, “Formation mechanism of local thickness profile of silicon epitaxial film”, Journal of Crystal Growth, 266(1-3), pp.327-332, 2004.
[17] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, The Molecular Theory of Gases and Liquids, John Wiley, New York, 1954.
[18] R.Krishna, “Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell—Stefan equations”, Chemical Engineering Science, 45(7), pp.1779–1791, 1990.
[19] A. B. Koudriavtsev, R. F. Jameson and W. Linert, The Law of Mass Action, Springer, New York, 2001.
[20] H. Habuka, Y. Aoyama, S. Akiyama, T. Otsuka, W. F. Qu, M. Shimada and K. Okuyama, “Chemical process of silicon epitaxial growth in a SiHCl3-H2 system”, Journal of Crystal Growth, 207, pp.77-86, 1999.
[21] COMSOL Multiphysics Ver. 5.5.