跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯佳宏
Chia-Hung Hou
論文名稱: 氮化鎵微光學元件之研究
Studies of GaN-based Microoptical Elements
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 英文
論文頁數: 52
中文關鍵詞: 微光學微光機電系統微透鏡光柵
外文關鍵詞: MOEMS, microoptics, gratings, diffractive microlenses
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們製作了以氮化鎵為材料的光學元件。氮化鎵繞射式的微透鏡的設計是採用有效光程差的方法。製作上是採用灰階光罩的方式來製作,僅需要一次的曝光及顯影,便可將圖樣定義在光阻層上,在透過乾蝕刻的方式,將光阻層上的圖樣轉移到氮化鎵材料層。
    最後我們用He-Cd雷射來量測此元件的焦距,所測得的焦距範圍在1260~1650+100微米。
    我們亦製作了氮化鎵薄膜光柵。氮化鎵的薄膜是透過金屬氧化物氣象沉積法磊晶在(111)方向的矽基板上。先氮化鎵的薄膜上製作出光柵的圖樣,再來利用濕蝕刻的方法將矽基版移除,最後就可以得到氮化鎵薄膜光柵。氮化鎵薄膜光柵所量測到的結果和模擬的結果非常吻合。
    未來可以將此二種元件結合在一起,構成一個以氮化鎵為材料的微光學系統。這將可以應用於藍光或紫外光的光學系統上。


    In this thesis, we demonstrate the micro-optics components fabricated in GaN-based materials. GaN diffractive microlenses are designed based on the optical path difference method. Gray-level mask is used to fabricate the diffractive microlenses on GaN epitaxial layer grown on sapphire substrate. The patterns of the microlenses are first formed on the photoresist deposited on GaN. The smooth microrelief on the photoresist is then transferred onto the GaN layer by inductively coupled plasma dry etching technique to form the diffractive microlenses. Three GaN diffractive microlenses are characterized with He-Cd laser, at the wavelength of 442 nm. The measured focal lengths are of the range of 1260~1650+100 ?m.
    In this work, to our knowledge, gratings on GaN membrane were also first demonstrated. First, GaN with the thickness of 1?m was grown (111)-oriented Si by metal organic chemical vapor deposition. Secondly, photolithography and dry etching are used to define the grating patterns on the GaN layer. The period of the gratings is 20 ?m and the etching depth is 0.15 ?m. The both sides of the sample are covered by Ni-Cr/Au metal thin films. To remove the Si below the gratings, a rectangular window is opened by etching the metal thin films on the back side of the sample. An isotropic wet etchant, HNA (composition of HNO3, HF and CH3COOH), is used to remove the Si in the window. Finally, after removal of the metal thin films by wet etching, the GaN membrane gratings are obtained.
    Due to the high transparency of the GaN-based materials such as AlGaN and InGaN in blue and UV regions, the stacked GaN-based components can be used in the applications of the UV micro-optics system.

    Chapter 1 Introduction 1.1 Motivation 1.2 Configuration of the thesis Chapter 2 Diffractive microlenses 2.1 Introduction to diffractive microlenses 2.2 Design and simulation of GaN diffractive microlenses 2.3 Fabrication of Gray-Level Mask on High-Energy Beam-Sensitive Glass 2.4 Fabrication of Diffractive microlenses 2.5 Measurement of GaN diffractive microlenses Chapter 3 GaN membrane gratings 3.1 Introduction to membrane gratings 3.2 Experiment and simulation results of a GaN membrane grating 3.3 Measurement of the GaN membrane grating Chapter 4 Conclusion and future work

    [1] V. M. Bright and B. J. Thompson, “Selected papers on Optical MEMS”, 153 (1999) 79
    [2] S. H. Park, H. Jeon, Y. J. Sung, and G. Y. Yeom, Appl. Opt. 40 (2001) 3698
    [3] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82 (2003) 3692
    [4] M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, Opt. Lett. 28 (2003) 731
    [5] 簡玲玉, “繞射式元件之製成及特性分析”, 國立中央大學物理研究所, 碩士論文, 中華民國90年
    [6] M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, Opt. Eng. 33 (1994) 3556
    [7] W. Daschner, M. Laarson, and S. H. Lee, Appl. Opt. 34 (1995) 2534
    [8] W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36 (1997) 4675
    [9] N. C. Craft and A. Y. Feldblum, Appl. Opt. 31 1735 (1992)
    [10] S. Nakamura and G. Fasol, “The Blue Laser Diode” (Springer, New York, 1997)
    [11] C. C. Chen, H. W. Chuang, G. C. Chi, C. C. Chuo and J. I. Chyi, Appl. Phys. Lett. 77 (2000) 3758
    [12] C. C. Chen, K. L. Hsieh, G. C. Chi, C. C. Chuo, J. I. Chyi and C. A. Chang, J. Appl. Phys. 89 (2001) 5465
    [13] C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chi, M. J. Jou, C. H. Lee, and M. Z. Lin, Appl. Phys. Lett. 79 (2001) 1477
    [14] C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chi and C. A. Chang, J. Appl. Phys. 90 (2001) 5180
    [15] M. Eisner and J. Schwider, Opt. Eng. 35 (1996) 2979
    [16] L. Erdmann and D. Efferenn, Opt. Eng. 36 (1997) 1094
    [17] Y. S. Kim,J. Kim,J. S. Choe, Y. G. Roh, H. Jeon, and J. C. Woo, IEEE Photon. Technol. Lett. 12 (2000) 507
    [18] E. M. Strzelecka, G. D. Robinson, M. C. Peters, F. H. Peters, and L. A. Coldren, Electron. Lett. 31 (1995) 724
    [19] M. E. Motamedi, Opt. Eng. 33 (1994) 3505
    [20] A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yamamoto, G. Hashimoto, A. Iida, and K. Osato,Jap. J. Appl. Phys 40 (2001) 1792
    [21] P. Heremans, J. Genoe, M. Kuijk, R. Vounchx, and G. Borghs, IEEE Photon. Technol. Lett. 9 (1997) 1367
    [22] C. R. King, L. Y. Lin, and M. C. Wu, IEEE Photon. Technol. Lett. 8 (1996) 1349
    [23] J. Jahns and S. J. Walker, Appl. Opt. 29 (1990) 931
    [24] D. A. Pommet, M. G. Moharam, and E. B. Grann, J. Opt. Soc. Am. A 11 1827 (1994)
    [25] 李明洪, “氮化鎵高數值孔鏡之設計、製作及特性分析”, p 10, 國立中央大學物理研究所, 碩士論文, 中華民國91年
    [26] F. Di, Y. Yingbai, J. Guofan, T. Qiaofeng, and H. Liu, J. Opt. Soc. Am. A 20 1793 (2003)
    [27] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J.W. Cook, Jr. and J. F. Schetzina, MRS Internet J. Nitride Semicond. Res. 4S1 (1999) G5.2
    [28] H. P. Herzig, “Micro-Optics elements, systems and application”, Taylor & Francis, 1997, p. 55
    [29] C. Wu, U.S. Patent 5,078,771 (7 January 1992)
    [30] C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, Opt. Lett. 28 (2003) 1260
    [31] M. Seon, T. Prokofyeva, M. Holtz, S. A. Nikishin, N. N. Faleev, and H. Temkin, Appl. Phys. Lett. 76 1842 (2000)
    [32] A. Strittmatter, S. Rodt, L. Reibmann, D. Bimberg, H. Schroder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, Appl. Phys. Lett. 78 727 (2001)
    [33] Y. Honda, Y Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. Phys. Lett. 80 222 (2002)
    [34] T. M. Katona, J. S. Speck and S. P. DenBaars, Appl. Phys. Lett. 81 3558 (2002)
    [35] A. Dadgar, M. Poschenrieder, A. Reiher, J. Blasing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez, and A Krost, Appl. Phys. Lett. 82 28 (2003)
    [36] B. Yang, A. Trampert, O. Brandt, B. Jenichen and K. H. Ploog, J. Appl. Phys. 83 3800 (1998)
    [37] A. M. Sanchez, F. J. Pacheco, S. I. Molina, R Garcia, P. Ruterana, M. A. Sanchez-Garcia and E. Calleja, Appl. Phys. Lett. 78 2688 (2001)
    [38] Shigeyasu Tanaka, Yoshio Honda, Nobuhiko Sawaki and Michio Hibino, Appl. Phys. Lett. 79 955 (2001)
    [39] M. Madou: “Fundamentals of Microfabrication”, (CRC Press, Boca Raton, Fla., 1997) pp. 208-210

    QR CODE
    :::