| 研究生: |
朱家銓 Chia-Chuan Chu |
|---|---|
| 論文名稱: |
雷射積層製造用高韌性鐵基金屬玻璃粉末與其工件性質之研究 Fe-based metallic glass powder with high fracture toughness preparation and additive manufacturing workpiece properties analysis |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 鐵基金屬玻璃 、氣噴粉體法 、積層製造 、磨耗測試 、抗腐蝕 |
| 外文關鍵詞: | Fe-based bulk metallic glass, gas atomization, additive manufacturing, abrasion test, corrosion resistance |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用鐵基金屬玻璃Fe-Cr-Mo-C-B-Co-Al 七元合金成分,以真空
感應高週波爐將之融煉成合金鑄錠,委由工研院以氣噴粉體法(Gas
atomization)製備成球型粉體,將每一爐次粉體經搖篩機篩分,再以X 光繞
射確認各區間粒徑粉體之非晶性與析出相。根據結果顯示粒徑在90 μm 以
下皆保有析出相α-Fe 組織以及非晶態,而當粒徑在25 μm 以下時為全非
晶結構。利用EPMA 確認粉體成分,運用掃描式電子顯微鏡觀測其粉體外
觀,粉體形貌為球型且截面皆為實心構造,進行積層製造可型性的評估。
積層製造工件製備可行性的評估上,使用粒徑區間25-53 μm 之粉體進
行面型燒結測試與方塊燒結測試,並對試片進行性質分析。以雷射積層製
造將7 組不同雷射功率與掃描速率組合進行面型燒結測試,成功燒結出尺
寸為10 mm x 10 mm x 3 mm 之方塊,方塊1(60 W-150 mm/s)、4(80 W-150
mm/s)、6(60 W-110 mm/s)外觀較為完整,故以此3 組參數進行主要分析。
面燒結方塊經X 光繞射分析確認其非晶性,硬度也可高達1273 Hv。
雷射積層製造鐵基金屬玻璃試片之磨耗率(1.06x10-6 mm3N-1m-1)和商
用不鏽鋼SS420(7.52x10-6 mm3N-1m-1)與SKDII (2.83x10-6 mm3N-1m-1)相比,
雷射積層製造鐵基金屬玻璃試片之耐磨耗能力遠高於不鏽鋼並和SKDII 相
當。雷射積層製造鐵基金屬玻璃試片的腐蝕電流與腐蝕電壓為1.61x10-7
(A/cm2)和-0.252 V,雷射積層製造鐵基金屬玻璃試片其抗腐蝕能力遠高於
模具鋼 SKDII,並與商用的不鏽鋼 SS420 相當,因此鐵基金屬玻璃粉體經
積層製造作為MIM 模具後勢看俏。
The alloy composition of Fe-Cr-Mo-C-B-Co-Al 7 components Fe-based
alloy was selected as the master alloy and prepared by vacuum induction melting.
Then the alloy ingots were re-melted and fabricated into spherical alloy powder
by gas atomization process in the Material and Chemical Laboratories, Industrial
Technology Research Institute (ITRI, Hsinchu). After size sieving, the Fe-based
alloy powder was characterized its amorphous status by X-ray diffraction (XRD).
The XRD results revealed that a broaden peak accompanied the weak crystalline
peaks of α-Fe occurred at the alloy powders with particle size below 90 μm.
Meanwhile, the appearance of all these Fe-based alloy powders present a
spherical shape and a solid cross-section.
7 sets parameters of laser power and scanning rate were obtained from the
results of square laser melting test by microscope observation. Then these 7 sets
parameters were applied to do the cube SLM test. After SLM, the cubes with
dimension 10 mm x 10 mm x 3 mm were successfully made. However, cracks
were found on the surface of most SLM cubes except the cubes made by the
parameters of P60-S150(#1), P80-S150(#4) and P60-S110(#6).
The Fe-based SLM sample shows the minimum wear rate of 1.95x10-6
mm3N-1m-1 among all samples in comparison with SS316 and SS304. The Febased
SLM sample also shows better corrosion resistance than SKDII. This Febased
amorphous alloy powder still have ideal properties after SLM.
[1] A. C. Lund, " Topological and chemical arrangement of binary alloys
during severe deformation ", Journal of Applied Physics, Vol. 95 pp.4815-
4822 (2004).
[2] H. S. Chen , H.J. Leamy, and C. E. Miller, "Preparation of glassy metals",
Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] Wang, L. and Chao, Y. (2012). Corrosion behavior of
Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl
solution. Materials Letters, 69, pp.76-78.
[4] A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials,
Springer, (2001).
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk
Amorphous Alloys", Acta Materialia, Vol. 48, pp. 279-306, (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of
bulk metallic glass-Applications for MEMS and microstructure fabrication",
Materials Science and Engineering, Vol. A449–451, pp. 898–902, (2007).
[7] Jason Shian-Ching Jang, Pei-Hua Tsai, An-Zin Shiao, Tsung-Hsiung Li,
Chih-Yu Chen, Jinn Peter Chu, Jenq-Gong Duh, Ming-Jen Chen, Shih-Hsin
Chang, Wen-Chien Huang, "Enhanced cutting durability of surgical blade
by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65,
pp. 56-60, (2015).
[8] Strauss, J. (2019). Metal injection molding (MIM) of precious
metals. Handbook of Metal Injection Molding, pp.609-622.
[9] Zhou, B., Zhou, J., Li, H. and Lin, F. (2018). A study of the microstructures
and mechanical properties of Ti6Al4V fabricated by SLM under
vacuum. Materials Science and Engineering: A, 724, pp.1-10.
[10] Mahbooba, Z., Thorsson, L., Unosson, M., Skoglund, P., West, H., Horn, T.,
Rock, C., Vogli, E. and Harrysson, O. (2018). Additive manufacturing of an
iron-based bulk metallic glass larger than the critical casting
thickness. Applied Materials Today, 11, pp.264-269.
[11] P. H. Tsai, A. C. Xiao, J.B. Li, J.S.C. Jang, J.P. Chun, J.C. Huang,"
Prominent Fe-based bulk amorphous steel alloy with large supercooled
liquid region and superior corrosion resistance", Journal of alloys and
compounds, Vol 586,pp.94-98, (2014).
[12] J. Kramer, "Produced the first amorphous metals through vapor deposition",
Annals of Physics, Vol. 19, pp. 37, (1934).
[13] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys
of Phosphorus with Nickel or Cobalt", Journal of Research of the National
Bureau of Standards, Vol. 44, pp. 109-122, (1950).
[14] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in
solidified Gold-Silicon alloys", Nature, Vol. 187, pp. 869-870, (1960).
[15] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43, pp. 364, (1980).
[16] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough,
"Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied
Physics Letters", Vol. 43, pp. 1017-1019, (1983).
[17] A. Inoue, "High strength bulk amorphous alloys with low critical cooling
rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[18] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder
and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method",
Material Transactions JIM, Vol. 31, pp. 425-428, (1990).
[19] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk
Amorphous Alloys with High Tensile Strength Produced by a High-Pressure
Die Casting Method", Materials Transactions JIM, Vol. 33, pp. 937-945,
(1992).
[20] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy
Principles, Third edition, (1994).
[21] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection
mould tooling incorporating conformal cooling channels via indirect
selective laser sintering", proceeding of the institution of mechanical
engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[22] C. Suryanarayana, A. Inoue, "Bulk Metallic Glassed", p.61, (2011).
[23] G. N. Jackson, “R.F. sputtering”, Thin Solid Film, Vol. 5, p.209, 1907.
[24] K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[25] A. Inoue, Materials Transactions JIM, Vol. 36, pp. 866, (1995).
[26] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic
glasses", Acta Materilia, Vol. 50, pp. 3501-3512, (2002).
[27] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass
Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol.
101, pp. 086108-1-3, (April 2007).
[28] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh , "Glass forming ability of
bulk glass forming alloys" , Scr Mater , Vol. 36 , P. 783 , (1997).
[29] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion",
Intermetallics,Vol. 18 , pp. 883-888 , (2010).
[30] Randall M. German, Powder Metallurgy Science, Second edition, (1994).
[31] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in
Gas Atomization", Mater. Sci. Appl. Vol. 2, pp. 87-96, (2011).
[32] 蔡恆毅 , "選擇性雷射燒熔製程" , 工業材料雜誌 , Vol. 369, pp. 112-121,
(2017).
[33] B.C. Gross, J.L. Erkal, S.Y. Lockwood, Chengpeng Chen,and Dana M.
Spence , " Evaluation of 3D Printing and Its Potential Impact on
Biotechnology and the Chemical Sciences", Analytical Chemistry, Vol. 86,
pp. 3241-3243, (2014).
[34] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal , S.
Kazi , S. Badshah , R.U. Khan , "Energy Absorption Ability of Thin-Walled
Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static
Axial Compression" , Journal of Advanced Research in Applied Mechanics ,
Vol. 18 , pp. 1-14, (2016).
[35] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical
Evaluation of Indentation Techniques for Measuring Fracture Toughness: I,
Direct Crack Measurements", Journal of the American Ceramic Society,
Vol.6, pp. 533-538, (1981).
[36] I. Yadroitsev, Ph. Bertrand, I. Smurov, Parametric analysis of the selective
laser melting process, Applied Surface Science, Vol. 253, pp. 8064–8069,
(2007)
[37] EO. Olakanmi, RF. Cochrane, KW. Dalgarno, " Densification mechanism
and microstructural evolution in selective laser sintering of Al–12Si
Powders", JMater Process Technol, Vol. 211, pp. 113–121, (2011).
[38] T.S. Srivatsan, T.S. Sudarshan, Additive Manufacturing: Innovations,
Advances, and Applications, CRC Press, (2015).
[39] Li, Y., Zhang, C., Xing, W., Guo, S. and Liu, L. Design of Fe-Based Bulk
Metallic Glasses with Improved Wear Resistance. ACS Applied Materials &
Interfaces, 10(49), pp.43144-43155,2018.