跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許詠翔
Yong-Siang Hsu
論文名稱: 以壓縮感知鬼影成像系統還原矽橡膠封裝內的 發光二極體熱影像
Thermal Image Reconstruction of LED Encapsulated in Silicon Resin with a Compressive Ghost Imaging System
指導教授: 鍾德元
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 壓縮感知鬼影成像熱影像發光二極體
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文闡述如何建構一套量測波長範圍在 2.5-5 μm 的中紅外壓縮感知鬼影成像系統
    來量測在矽橡膠封裝內的 LED 晶片熱影像。藉由選擇適當的光學元件和單像素偵測器,
    量測能穿透矽橡膠封裝的波長 3.7-4.7 μm 中紅外熱輻射,搭配空間光調制器(spatial light
    modulator, SLM)提供空間解析度,最後再以基於壓縮感知的演算法,成功重建矽橡膠封
    裝內 LED 晶片的熱影像


    A ghost imaging system-based thermal camera is proposed and built to measure the thermal
    image of a LED chip in silicone rubber encapsulation. With a proper choice of optics and a
    bucket detector to measure the 3.5-4.5 μm thermal radiation transmitting the silicone
    encapsulation, spatial resolution provided with spatial light modulation, and algorithm based
    on compressive sensing, thermal images of a LED in the silicone rubber encapsulation can be
    reconstructed.

    中文摘要.....................................................................................................................................i Abstract.......................................................................................................................................ii 致謝...........................................................................................................................................iii 目錄...........................................................................................................................................iv 圖目錄.....................................................................................................................................viii 表目錄.......................................................................................................................................xi 第一章 緒論..............................................................................................................................1 1-1 文獻回顧.........................................................................................................................1 1-2 研究動機.........................................................................................................................3 第二章 背景知識......................................................................................................................5 2-1 發光二極體(LED)的半導體材料 InGaN 光譜..............................................................5 2-2 發光二極體 LED 的熱特性 ...........................................................................................7 2-3 順向偏壓法.....................................................................................................................8 2-4 黑體輻射(blackbody radiation).....................................................................................10 2-5 矽橡膠封裝與吸收光譜...............................................................................................12 2-6 中紅外光光學元件.......................................................................................................13 2-7 紅外線偵測器與吸收光譜...........................................................................................15 2-8 鬼影成像(ghost imaging)...............................................................................................16 2-8-1 數位微形反射鏡元件............................................................................................16 2-8-2 鬼影成像系統 ........................................................................................................17 2-8-3 Standard ghost imaging ..........................................................................................18 2-9 壓縮感知(compressive sampling).................................................................................19 2-9-1 取樣的數學表示 ....................................................................................................19 2-9-2 稀疏性(sparsity)和有限等距性質(restricted isometry property)..........................20 2-9-3 1 minimization ........................................................................................................22 v 2-9-4 壓縮感知鬼影成像................................................................................................24 2-9 鎖相放大器與其原理...................................................................................................27 2-9-1 輸入訊號與乘法器................................................................................................27 2-9-2 低通濾波器 Lowpass filter ...................................................................................28 2-9-3 時間常數 Time constant ........................................................................................28 第三章 實驗儀器與設備........................................................................................................29 3-1 實驗樣品.......................................................................................................................29 3-1-1 電烙鐵 ....................................................................................................................29 3-1-2 石墨噴漆 ................................................................................................................29 3-1-3 金線.......................................................................................................................30 3-1-4 矽橡膠 ....................................................................................................................30 3-1-5 InGaN/GaN 藍光 LED...........................................................................................31 3-1-6 散熱膏 ....................................................................................................................31 3-2 光學元件.......................................................................................................................32 3-2-1 矽平凸透鏡 ............................................................................................................32 3-2-2 物鏡 ........................................................................................................................32 3-3 數位微形反射鏡元件(Digital Micromirror Device, DMD).........................................33 3-3-1 硬體 ........................................................................................................................33 3-3-2 DMD 晶片的吸收光譜...........................................................................................34 3-3-3 Pattern rate...............................................................................................................36 3-3-4 圖形使用者介面(graphical user interface, GUI)...................................................37 3-4 InAsSb 偵測器...............................................................................................................39 3-5 可見光偵測器...............................................................................................................40 3-5-1 DET100 ...................................................................................................................40 3-5-2 PDA36A2 ................................................................................................................40 3-6 雷射二極體控制台(Benchtop Laser Diode Controller) ..............................................40 3-7 鎖相放大器...................................................................................................................41 3-8 類比數位轉換器 analog to digital converter................................................................42 3-9 電磁加熱攪拌器...........................................................................................................42 3-10 研磨機.........................................................................................................................42 3-11 熱像儀.........................................................................................................................42 第四章 實驗架構....................................................................................................................43 4-1 光學架構 ......................................................................................................................43 4-2 電子電路架構 ..............................................................................................................45 4-3 4μmCGI 系統光學架構的數學描述.............................................................................47 4-4 程式架構.......................................................................................................................49 4-4-1 取樣矩陣和 sparsifying basis ................................................................................49 4-4-2 設定 DMD 播放參數.............................................................................................52 4-4-3 讀取電壓訊號 v .....................................................................................................53 4-4-4 影像還原 ................................................................................................................55 4-4-5 系統校正參數 ........................................................................................................55 第五章 實驗............................................................................................................................58 5-1 4μmCGI 系統的成像規格............................................................................................58 5-1-1 Field of View 識別..................................................................................................58 5-1-2 空間解析度量測 ....................................................................................................60 5-1-3 4μmCGI 系統景深量測..........................................................................................62 5-2 裸晶 LED 的熱影像還原 .............................................................................................63 5-3 矽橡膠封裝內 LED 晶片的熱影像還原 .....................................................................65 5-3-1 矽橡膠封裝製備 ....................................................................................................65 5-3-2 矽橡膠濾波片 ........................................................................................................66 5-3-3 順向偏壓法 ............................................................................................................69 5-3-4 封裝內 LED 的熱影像還原與 4μmCGI 系統驗證 ..............................................71 第六章 結論............................................................................................................................78 第七章 參考文獻....................................................................................................................79 第八章 附錄............................................................................................................................81 8-1 DMD 研磨與拋光..........................................................................................................81 8-2 Matlab 程式碼...............................................................................................................82 8-2-1 生成取樣矩陣和 DMD 播放影像.........................................................................82 8-2-2 matlab 讀取電壓值 v 和時脈訊號 Vclock程式碼...................................................84 8-2-3 影像還原 ................................................................................................................88 8-3 Labview 讀取電壓值方塊圖(block diagram)和前面板(front panel) ...........................91

    1. Efremov, A., et al., Effect of the joule heating on the quantum efficiency and choice of
    thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006.
    40(5): p. 605-610.
    2. Schubert, E.F., Light-Emitting Diodes. 2 ed. 2006, Cambridge: Cambridge University
    Press.
    3. Han, D., J. Shim, and D. Shin, Relationship between thermal and luminance
    distributions in high-power lateral GaN/InGaN light-emitting diodes. Electronics
    letters, 2010. 46(6): p. 437-439.
    4. Lin, Y.-H., et al., Development of high-performance optical silicone for the packaging
    of high-power LEDs. IEEE Transactions on Components and Packaging Technologies,
    2010. 33(4): p. 761-766.
    5. Mark, J.E., Polymer Data Handbook. 1999: Oxford University Press.
    6. Xi, Y., et al., Junction temperature in ultraviolet light-emitting diodes. Japanese
    Journal of Applied Physics, 2005. 44(10R): p. 7260.
    7. Chung, T.-y., Y.-S. Hsu, and T.-W. Liang. Measuring the temperature of LED chips
    encapsulated by transparent silicone rubber. in Frontiers in Optics. 2019. Optical
    Society of America.
    8. Shih, B.-J., et al., Study of temperature distributions in pc-WLEDs with different
    phosphor packages. Optics express, 2015. 23(26): p. 33861-33869.
    9. Ferri, F., et al., Differential ghost imaging. Physical review letters, 2010. 104(25): p.
    253603.
    10. Katz, O., Y. Bromberg, and Y. Silberberg, Compressive ghost imaging. Applied
    Physics Letters, 2009. 95(13): p. 131110.
    11. Liu, H.-C. and S. Zhang, Computational ghost imaging of hot objects in long-wave
    infrared range. Applied Physics Letters, 2017. 111(3): p. 031110.
    12. Brunton, S.L. and J.N. Kutz, Data-driven science and engineering: Machine learning,
    dynamical systems, and control. 2019: Cambridge University Press.
    13. Candès, E.J. and M.B. Wakin, An introduction to compressive sampling. IEEE signal
    processing magazine, 2008. 25(2): p. 21-30.
    14. Candes, E.J., J.K. Romberg, and T. Tao, Stable signal recovery from incomplete and
    inaccurate measurements. Communications on Pure and Applied Mathematics: A
    Journal Issued by the Courant Institute of Mathematical Sciences, 2006. 59(8): p.
    1207-1223.
    15. Kazazis, S.A., E. Papadomanolaki, and E. Iliopoulos, Polarization-engineered
    InGaN/GaN solar cells: realistic expectations for single heterojunctions. IEEE Journal
    of Photovoltaics, 2017. 8(1): p. 118-124.
    16. Linti, G., The Group 13 Metals Aluminium, Gallium, Indium and Thallium. Chemical
    Patterns and Peculiarities. Edited by Simon Aldridge and Anthony J. Downs. 2011,
    Wiley Online Library.
    17. Hummel, R.E., Electronic properties of materials. 2011: Springer Science & Business
    Media.
    18. Helm, M., The basic physics of intersubband transitions, in Semiconductors and
    semimetals. 1999, Elsevier. p. 1-99.
    19. Hofstetter, D., J. Faist, and D.P. Bour, Midinfrared emission from InGaN/GaN-based
    light-emitting diodes. Applied Physics Letters, 2000. 76(12): p. 1495-1497.
    20. Huang, J.-J., H.-C. Kuo, and S.-C. Shen, Nitride Semiconductor Light-Emitting Diodes
    (LEDs): Materials, Technologies, and Applications. 2017: Woodhead Publishing.
    21. Neamen, D.A., Semiconductor physics and devices: basic principles. 2012: New York,
    NY: McGraw-Hill.
    22. Xuan, X. and D. Li, Joule heating in electrokinetic flow: theoretical models. Encycl.
    Microfluid. Nanofluidics, Springer US, 2008: p. 896-905.
    23. Thornton, S.T. and A. Rex, Modern physics for scientists and engineers. 2012:
    80
    Cengage Learning.
    24. Renz, U., Handbook of Burner Technology for Industrial Furnaces. 2009. p. 28/45.
    25. Radtke, A.S. and G.E. Brown, Frankdicksonite, BaF2, a new mineral from Nevada.
    American Mineralogist: Journal of Earth and Planetary Materials, 1974. 59(9-10): p.
    885-888.
    26. Patnaik, P., Handbook of inorganic chemicals. Vol. 529. 2003: McGraw-Hill New
    York.
    27. Hansen, G., J. Schmit, and T. Casselman, Energy gap versus alloy composition and
    temperature in Hg1− x Cd x Te. Journal of Applied Physics, 1982. 53(10): p. 7099-
    7101.
    28. Littler, C. and D. Seiler, Temperature dependence of the energy gap of InSb using
    nonlinear optical techniques. Applied Physics Letters, 1985. 46(10): p. 986-988.
    29. Murawski, K., et al., Bandgap energy determination of InAsSb epilayers grown by
    molecular beam epitaxy on GaAs substrates. Progress in Natural Science: Materials
    International, 2019. 29(4): p. 472-476.
    30. Padgett, M.J. and R.W. Boyd, An introduction to ghost imaging: quantum and
    classical. Philosophical Transactions of the Royal Society A: Mathematical, Physical
    and Engineering Sciences, 2017. 375(2099): p. 20160233.
    31. Jackson, J., Visual Analysis of a Texas Instruments Digital Micromirror Device. The
    Institute of Optics University, Rochester, 2019.
    32. Dudley, D., W.M. Duncan, and J. Slaughter. Emerging digital micromirror device
    (DMD) applications. in MOEMS display and imaging systems. 2003. International
    Society for Optics and Photonics.
    33. Scholes, S., et al., Structured light with digital micromirror devices: a guide to best
    practice. Optical Engineering, 2019. 59(4): p. 041202.
    34. Clemente, P., et al., Optical encryption based on computational ghost imaging. Optics
    letters, 2010. 35(14): p. 2391-2393.
    35. Gonzalez, R.C. and R.E. Woods, Digital image processing 4th edition, global edition.
    2018.
    36. Kreyszig, E., Advanced Engineering Mathematics 10th Edition. 2009.
    37. Boyd, S., S.P. Boyd, and L. Vandenberghe, Convex optimization. 2004: Cambridge
    university press.
    38. Candes, E. and J. Romberg, l1-magic: Recovery of sparse signals via convex
    programming. URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf, 2005.
    4: p. 14.
    39. Amplifier, D.L.-I., MODEL SR830. Interface, 1993. 4: p. 24.
    40. Alexander, C.K., Fundamentals of electric circuits. 2009: McGraw-Hill.
    41. Taylor, R.A., et al. Fabrication and comparison of selective, transparent optics for
    concentrating solar systems. in High and Low Concentrator Systems for Solar Energy
    Applications X. 2015. International Society for Optics and Photonics.
    42. Muley, S.V. and N.M. Ravindra, Emissivity of electronic materials, coatings, and
    structures. Jom, 2014. 66(4): p. 616-636.
    43. Goodman, J.W., Introduction to Fourier optics. 2005: Roberts and Company
    Publishers

    QR CODE
    :::