| 研究生: |
許詠翔 Yong-Siang Hsu |
|---|---|
| 論文名稱: |
以壓縮感知鬼影成像系統還原矽橡膠封裝內的 發光二極體熱影像 Thermal Image Reconstruction of LED Encapsulated in Silicon Resin with a Compressive Ghost Imaging System |
| 指導教授: | 鍾德元 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 壓縮感知 、鬼影成像 、熱影像 、發光二極體 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文闡述如何建構一套量測波長範圍在 2.5-5 μm 的中紅外壓縮感知鬼影成像系統
來量測在矽橡膠封裝內的 LED 晶片熱影像。藉由選擇適當的光學元件和單像素偵測器,
量測能穿透矽橡膠封裝的波長 3.7-4.7 μm 中紅外熱輻射,搭配空間光調制器(spatial light
modulator, SLM)提供空間解析度,最後再以基於壓縮感知的演算法,成功重建矽橡膠封
裝內 LED 晶片的熱影像
A ghost imaging system-based thermal camera is proposed and built to measure the thermal
image of a LED chip in silicone rubber encapsulation. With a proper choice of optics and a
bucket detector to measure the 3.5-4.5 μm thermal radiation transmitting the silicone
encapsulation, spatial resolution provided with spatial light modulation, and algorithm based
on compressive sensing, thermal images of a LED in the silicone rubber encapsulation can be
reconstructed.
1. Efremov, A., et al., Effect of the joule heating on the quantum efficiency and choice of
thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006.
40(5): p. 605-610.
2. Schubert, E.F., Light-Emitting Diodes. 2 ed. 2006, Cambridge: Cambridge University
Press.
3. Han, D., J. Shim, and D. Shin, Relationship between thermal and luminance
distributions in high-power lateral GaN/InGaN light-emitting diodes. Electronics
letters, 2010. 46(6): p. 437-439.
4. Lin, Y.-H., et al., Development of high-performance optical silicone for the packaging
of high-power LEDs. IEEE Transactions on Components and Packaging Technologies,
2010. 33(4): p. 761-766.
5. Mark, J.E., Polymer Data Handbook. 1999: Oxford University Press.
6. Xi, Y., et al., Junction temperature in ultraviolet light-emitting diodes. Japanese
Journal of Applied Physics, 2005. 44(10R): p. 7260.
7. Chung, T.-y., Y.-S. Hsu, and T.-W. Liang. Measuring the temperature of LED chips
encapsulated by transparent silicone rubber. in Frontiers in Optics. 2019. Optical
Society of America.
8. Shih, B.-J., et al., Study of temperature distributions in pc-WLEDs with different
phosphor packages. Optics express, 2015. 23(26): p. 33861-33869.
9. Ferri, F., et al., Differential ghost imaging. Physical review letters, 2010. 104(25): p.
253603.
10. Katz, O., Y. Bromberg, and Y. Silberberg, Compressive ghost imaging. Applied
Physics Letters, 2009. 95(13): p. 131110.
11. Liu, H.-C. and S. Zhang, Computational ghost imaging of hot objects in long-wave
infrared range. Applied Physics Letters, 2017. 111(3): p. 031110.
12. Brunton, S.L. and J.N. Kutz, Data-driven science and engineering: Machine learning,
dynamical systems, and control. 2019: Cambridge University Press.
13. Candès, E.J. and M.B. Wakin, An introduction to compressive sampling. IEEE signal
processing magazine, 2008. 25(2): p. 21-30.
14. Candes, E.J., J.K. Romberg, and T. Tao, Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics: A
Journal Issued by the Courant Institute of Mathematical Sciences, 2006. 59(8): p.
1207-1223.
15. Kazazis, S.A., E. Papadomanolaki, and E. Iliopoulos, Polarization-engineered
InGaN/GaN solar cells: realistic expectations for single heterojunctions. IEEE Journal
of Photovoltaics, 2017. 8(1): p. 118-124.
16. Linti, G., The Group 13 Metals Aluminium, Gallium, Indium and Thallium. Chemical
Patterns and Peculiarities. Edited by Simon Aldridge and Anthony J. Downs. 2011,
Wiley Online Library.
17. Hummel, R.E., Electronic properties of materials. 2011: Springer Science & Business
Media.
18. Helm, M., The basic physics of intersubband transitions, in Semiconductors and
semimetals. 1999, Elsevier. p. 1-99.
19. Hofstetter, D., J. Faist, and D.P. Bour, Midinfrared emission from InGaN/GaN-based
light-emitting diodes. Applied Physics Letters, 2000. 76(12): p. 1495-1497.
20. Huang, J.-J., H.-C. Kuo, and S.-C. Shen, Nitride Semiconductor Light-Emitting Diodes
(LEDs): Materials, Technologies, and Applications. 2017: Woodhead Publishing.
21. Neamen, D.A., Semiconductor physics and devices: basic principles. 2012: New York,
NY: McGraw-Hill.
22. Xuan, X. and D. Li, Joule heating in electrokinetic flow: theoretical models. Encycl.
Microfluid. Nanofluidics, Springer US, 2008: p. 896-905.
23. Thornton, S.T. and A. Rex, Modern physics for scientists and engineers. 2012:
80
Cengage Learning.
24. Renz, U., Handbook of Burner Technology for Industrial Furnaces. 2009. p. 28/45.
25. Radtke, A.S. and G.E. Brown, Frankdicksonite, BaF2, a new mineral from Nevada.
American Mineralogist: Journal of Earth and Planetary Materials, 1974. 59(9-10): p.
885-888.
26. Patnaik, P., Handbook of inorganic chemicals. Vol. 529. 2003: McGraw-Hill New
York.
27. Hansen, G., J. Schmit, and T. Casselman, Energy gap versus alloy composition and
temperature in Hg1− x Cd x Te. Journal of Applied Physics, 1982. 53(10): p. 7099-
7101.
28. Littler, C. and D. Seiler, Temperature dependence of the energy gap of InSb using
nonlinear optical techniques. Applied Physics Letters, 1985. 46(10): p. 986-988.
29. Murawski, K., et al., Bandgap energy determination of InAsSb epilayers grown by
molecular beam epitaxy on GaAs substrates. Progress in Natural Science: Materials
International, 2019. 29(4): p. 472-476.
30. Padgett, M.J. and R.W. Boyd, An introduction to ghost imaging: quantum and
classical. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 2017. 375(2099): p. 20160233.
31. Jackson, J., Visual Analysis of a Texas Instruments Digital Micromirror Device. The
Institute of Optics University, Rochester, 2019.
32. Dudley, D., W.M. Duncan, and J. Slaughter. Emerging digital micromirror device
(DMD) applications. in MOEMS display and imaging systems. 2003. International
Society for Optics and Photonics.
33. Scholes, S., et al., Structured light with digital micromirror devices: a guide to best
practice. Optical Engineering, 2019. 59(4): p. 041202.
34. Clemente, P., et al., Optical encryption based on computational ghost imaging. Optics
letters, 2010. 35(14): p. 2391-2393.
35. Gonzalez, R.C. and R.E. Woods, Digital image processing 4th edition, global edition.
2018.
36. Kreyszig, E., Advanced Engineering Mathematics 10th Edition. 2009.
37. Boyd, S., S.P. Boyd, and L. Vandenberghe, Convex optimization. 2004: Cambridge
university press.
38. Candes, E. and J. Romberg, l1-magic: Recovery of sparse signals via convex
programming. URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf, 2005.
4: p. 14.
39. Amplifier, D.L.-I., MODEL SR830. Interface, 1993. 4: p. 24.
40. Alexander, C.K., Fundamentals of electric circuits. 2009: McGraw-Hill.
41. Taylor, R.A., et al. Fabrication and comparison of selective, transparent optics for
concentrating solar systems. in High and Low Concentrator Systems for Solar Energy
Applications X. 2015. International Society for Optics and Photonics.
42. Muley, S.V. and N.M. Ravindra, Emissivity of electronic materials, coatings, and
structures. Jom, 2014. 66(4): p. 616-636.
43. Goodman, J.W., Introduction to Fourier optics. 2005: Roberts and Company
Publishers