| 研究生: |
吳於貝 Yu-Ba Wu |
|---|---|
| 論文名稱: |
幾丁聚醣於薄膜製程發展及物性之研究 |
| 指導教授: |
徐新興
Shin-Shing Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 大腸桿菌 、金黃葡萄球菌 、綠膿桿菌 、薄膜製程發展 、幾丁聚醣 、相轉換 |
| 外文關鍵詞: | Pseudomonas aeruginosa, Staphylococcus aureus, phase inversion, control release, AgSD, chitosan, E-coli |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣因具有生物分解性、無毒性、良好的生物相容性及價格便宜,而且可從廢棄的蝦蟹殼中大量取得等優點,所以已經被用於生醫材料方面。本研究藉由幾丁聚醣來作為人工披覆物的材料,並利用兩種不同的製程及冷凍乾燥過程製造出幾丁聚醣非對稱薄膜。此兩種製程第一種為:乾/濕式合併相轉換製程;而第二種製程則為濕式相轉換合併熱處理製程。利用此兩種方法可製出不同條件的薄膜,對此非對稱幾丁聚醣薄膜都包含兩層結構:上層為堆積緊密之緻密層,而下為結構酥鬆之海綿體之孔洞層。這兩種結構物分別有著不同的功能,堆積緊密之緻密層將可控制水氣之透過量及提供必要的機械強度;海綿體之孔洞層則負責吸收傷口之滲出液及傷口濕潤的環境。
經由此兩種製程的非對稱幾丁聚醣薄膜在吸水能力、氣體透過、水氣透過、機械性質、藥物穿透及藥物釋放方面都有很明顯的不同。
由濕式相轉換合併熱處理製程所得的薄膜可得到較高的水含量、氣體透過量及包覆AgSD之釋放量;而在乾/濕式合併相轉換製程可得較佳的機械性質、AgSD包覆率及包覆AgSD之控制釋放能力。
對於包覆AgSD之非對稱幾丁聚醣薄膜,不論是經由乾/濕式合併相轉換製程或濕式相轉換合併熱處理製程都可得到兩階段的藥物釋放行為。經濕式相轉換合併熱處理製程的包覆AgSD薄膜,在2000分鐘內第一階段的釋放總量即可快速的達到50-55%;而經乾/濕式合併相轉換製程第一階段的釋放總量也可達35-55%。兩種製程的第二階段AgSD釋放,則呈現較緩慢的釋放趨勢直至8200分鐘。如果於生理緩衝液中添加酵素,則兩階段的釋放機制將轉變成一階段的快速釋放行為。
而抗菌實驗則顯示出,經包覆AgSD的非對稱幾丁聚醣薄膜對於綠膿桿菌、金黃葡萄球菌及大腸桿菌都有明顯的抗菌能力,且抗菌能力可維持四天以上。
Chitosan[β(1→4)-2-amino-2-deoxy-D-glucose] is a natural, abundant , nontoxic, biopolymer and is widely produced commercially from crab and shrimp waste shells .A novel artificial wound dressing is made by chitosan via phase inversion and lyophilization method in this study. Two types of phase inversion were employed: dry-wet process and wet-dry process. The asymmetric chitosan membrane made from our laboratory is consists of two layers in which the upper layer is dense skin and the sub layer is porous. The dense skin acts as the water vapor barrier and provides mechanical strength and the porous part is capable of absorbing wound exudate and provides a moist environment.
There were significant differences in water uptaking ability, gas permeation, mechanical strength, water vapor flux, drug pass flux, major structure and AgSD-impregnated in terms of two processes of isothermal process with time changed. For wet-dry process made membrane, It has higher gas permeability, better water uptaking ability and quicker AgSD release rate. For dry-wet-process made membrane, it has higher mechanical strength, better controlled release and more effectively AgSD-impregnated.
The release of AgSD from AgSD-impregnated chitosan wound dressing made by the two processes was found to proceed by two-stage release. In the first stage, it has 50-55% rapid release for wet-dry-process prepared membrane and 35-55% release for dry -wet-process prepared one in 2000 min. In the second stage, AgSD was slowly released up to 8200 min. The two-stage behavior of release becomes to one stage when lysozyme is added into PBF buffer.
From the in-vitro studies, the antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudomonas aeruginosa, Staphylococcus aureus and E-coli. It was significantly found that the suppression of bacterial proliferation was effective within 4 days when compared with control group.
01. Sabolinsky M. L., Alvarez O., Auletta M., Mulder G., Parenteau N. L., Cultured skin as a smart material for healing wounds : experience in venous ulcers., Biomaterials.,17,311,1996
02. Ruoslahti E., Yamaguchi Y., Proteoglycans as modulators of growth
factor activities., Cell., 64,86,1991
03. Clark R. A. F., Mechanisms of cutaneous wound repair., In :
Westerhof W., editor. Leg ulcer: Diagnosis & treatment., New York.,
Elsevier., P.29-50,1993
04. Ovington L. G., The well dressed wound: An overview of dressing
type., Hospital
Management Publications., Convatec Bristol Myers Squib Company.,
10, P.1A- 11A, 1998
05. Winter G. D., Formation of the scab and the rate of epithelialization of
Superficial wounds in skin of young domestic pig., Nature.,193,293,1962
06. Wong P., Physical evaluation of hydrogel as a burn wound dressing.,
MSc Thesis., 1980
07. Tavis M. J., Thornton J., Danet R. et al., Anew composite skin
prosthesis. Burns., 7,123,1978
08. Quinn K. J., Courtney J. M., Evans J. H. et al., Principles of burn
dressings., Biomaterials., 6,369,1985
09. Pruitt B. A. and Levine N. S., Characteristics and uses of biological
dressings and skin substitutes., Arch. Surg., 119,312,1984
10. Chvapil M., Considerations on manufacturing principle of a synthetic
burn dressing-a review., J. Biomed. Mater. Res., 16,245,1982
11. Muir I. F. K., Barclay T. L., Burns and Their Treatment., London,
Lloyd Luke.,1962
12. Norton L. and Chvapil M., Comparison of newer synthetic and
biological wound dressings., J. Trauma., 21,463,1981
13. Platt A. J., Phipps A., Judkins K., A comparative study of silicone net
dressing and paraffin gauze dressing in skin-grafted sites., Burns.,
22,543,1996
14.Lawrence J. C. 1982 Laboratory studies of dressings in wound healing
symposium(ed) Lawrence J. C.(Institute of accident surgery)
Birmingham in England, P.115
14. Queen D., Evans J. H., Gaylor J. D. S., Courtney J. M. et al., Burn
wound dressings-a review., Burns.,13,218,1987
15. Purna S., Mary B., Collagen based dressing-a review.,
Burns.,26,54,2000
17.Bartlett R. H., Skin substitutes., J. Trauma., 21,731,1981
18.Yannas I. V., Burke J. F., Design of an artificial skin. I. Basic design
principle., J. Biomed. Mater. Res., 14,65,1980
19.Yannas I. V., Burke J. F., Warpehoski M. et al., Prompt long-term
functional replacement of skin., Trans. Am. Soc. Artif. Int.,
27,19,1981
20.Unger M. G., Roberts M., Lyophilised amniotic membrane on graft
donor-sites., Br. J. Surg., 29,102,1976
21.Maral T., Borman H., Arslan H., Demirhan B., Akinbingol G., Haberal
M., Effectiveness of human amnion preserved long-term in glycerol
as a temporary biological dressing., Burns., 25,625,1999
22.Park G. B., Burn wound coverings-a review., Biomater. Med. Devices
Artif., 6,1,1978
23.Tavis M. J. Thornton J. W., Harney J. H. et al., Graft adherence to
deep epithelialised surfaces: a comparative study., Am. Surg.,
184,594,1976
24.McDowall R. A. W.,Hackett M. E. J., The use of lyphilised skin as an
initial dressing in partial-thickness burns., Chir. Pllastica., 3,159,1976
25.Chatterjee D. S., A controlled comparative study of the use of porcine
xenograft in the treatment of partial thickness skin loss in an
occupational health centre., Ann. Med. Res. Opin., 5,726,1978
26.Rahman M. M., In vitro Assessment of polymeric burn wound
coverings., MSc Thesis.,1982
27.Davies J. W. L., Sythetic materials for covering burn wounds: progress
toward perfection. Part I and II., Burns., 10,94,1983
28.Townsend P. L. G., The quest for a deep and painless donor site
dressing., Burns., 2,82,1975
29.Neumann P. M., Zur B., Zhrenreich Y., Gelatin based sprayable foam
as a skin substitute., J. Biomed. Mater. Res., 15,9,1981
30.Pruitt B. A., Silverstein P., Methods of resurfacing denuded skin
areas., Transplant Proc., 3,1537,1971
31.Wokalck H., Ruh H., Vaubel E. et al., Theoretical aspects and clinical
experience on a new hydrogel wound dressing material. In: Woods H.
F., Cottier D. (eds), Geliperm: Alear Advance In Healing.,
Proceedings of a Conference Held at The John Radcliffe Hospital,
Oxford., 1985
32.Gilchrist T., Martin A. M., Wound treatment with sorbsan-an alginate
fibre dressing., Biomaterials., 4,4,1983
33.GoKoo C., Burhop K., A comparative study of wound dressings on
full thickness wounds in micropigs., Decubitus., 6,42,1993
34.Yannas I.V., Burke J. F., Design of an artificial skin. I. Basic design
principles., J. Biomed. Mater. Res.,14,65,1980
35.Okkema A. Z., Yu X.H., and Cooper S. L., Physical and blood
contactimg characteristics of propyl sulphonate grafted Biomer.,
Biomaterials.,12,3,1991.
36.Fuijwara Y., Aiba S., Minoura N., Kobayashi J., and Satou H., Cell
growth on copoly(L-alanine, γ-benzyl-L-gultamate) and its
modified membranes., in Preprints 6th Ann. Meeting Japanese Soc.
Biomaterials., 89,1987
37.Su C. H. et al., Fungal mycelia as the source of chitin and
polysaccharides and their applications as skin substitutes.,
Biomaterials., 18,1169,1997
38.Onishi H., Machida Y., Biodegradation and distribution of water-
soluble chitosam in mice., Biomaterials., 20,175,1999
39.Hirano S., Noishiki Y., The blood compatibility of chitosan and N-
acylchitosans., J. Biomed. Mater. Res., 19,413,1985
40.Xu J., McCarthy P., Gross R. A., Kaplan D.L., Chitosan film acylation
and effects on biodegradability., Macromolecules., 29,3436,1996
41.Rao S. B., Sharma P., Use of chitosan as a biomaterial: Studies on its
satefy and hemostatic potential., J. Biomed. Mater. Res., 34,21,1997
42.Biagini G., et al., Wound management with N-carboxybutyl chitosan.,
Biomaterials., 12,281,1991
43.Muzzarelli R. A. A., et al., Stimulatory effect on bone formation
exerted by a modified chitosan., Biomaterials., 15,1075,1994
44.Kojima K.,Okamoto Y., Miyatake K., Kitamura Y., Minami S.,
Collagen typing of granulation tissue induced by chitin and chitosan.,
Carbohyd. Polym.,37,109,1998
45.Minami S., Okamoto Y., Miyatake K., Matsuhashi A., Kitamura Y.,
Tanigawa T., Tanaka Y., Shigemasa Y., Chitin induces type IV
collagen and elastic fiber in implanted non-woven fabric of
polyester., Carbohyd. Polym., 29,295,1996
46.Ueno H., Yamada H., Tanaka I., Kaba N., Matsuura M., Okumura M.,
Kadosawa T., Fujinaga., Accelerating effects of chitosan for healing
at early phase of experimental open wound in dogs., Biomaterials.,
20,1407,1999
47.Wan W. S., Liang K. H., Adsorption of gold(III) ions onto chitosan
and N-carboxymethyl chitosan: Equilibrium studies., Ind. Eng. Chem.
Res.,38,1411,1999
48.Modrzejewska Z., Kaminski W., Separation of Cr(VI) on chitosan
membrane., Ind. Eng. Chem. Res., 38,4946,1999
49.Zeng X., Ruckenstein E., Cross-linked macroporos chitosan anion-
exchange membranes for protein separations., J. Membrane. Sci.,
148,195,1998
50.Guibal E., Larkin A., Vincent T., Tobin J. M., Chitosan sorbents for
platinum sorption from dilute solutions., Ind. Eng. Chem. Res.,
38,4011,1999
51.Lasko C. L., Hurst M. P., An investigation into the use of chitosan for
the removal of soluble silver from industrial wasterwater., Environ.
Sci. Technol.,33,3622,1999
52.Qurashi M.T., Blair H. S., Allen S. J., Studies on modified chitosan
membrane. II . Dialysis of low molecular weight metabolites., J.
Appl. Polym. Sci., 46,263,1992
53.Amiji M. M., Permeability and blood compatibility properties of
chitosan-poly(ethylene oxide) blend membranes ffor haemodialysis.,
Biomaterials., 16,593,1995
54.Cruz J., Kawasaki M., Corski W., Electrode coatings based on
chitosan scaffolds., Anal. Chem., 72,680,2000
55.Uragami T., Matsuda T., Okuno H., Miyata T., Structure of chemically
modified chitosan membranes and their characteristics of permeation
and separation of aqueous ethanol solutions., J. Membrane. Sci.,
88,243,1994
56.Chandy T., Sharma C. P.., Chitosan matrix for oral sustained delivery
of ampicillin., Biomaterials., 14,939,1993
57.Shiraishi S., Imai T., Otagiri M., Controlled release of indomethacin
by chitosan-polyelectrolyte complex: optimization and in
vivo/evalution., J. Control. Release., 25,217,1993
58.Groboillot A. F., Champagne C. P., Darling G. D., Poncelet D.,
Neufeld R. J.., Membrane Formation by Interfacial Cross-Linking of
Chitosan for Microencapsulation of Lactococcus lactis.,
Biotechnol. Bioeng., 42,1157,1993
59.Shinonaga M. A., Kawamura Y., Yamane T., Immobilization of Yeast
Cells With Cross-Linked chitosan Beads., J. Ferment. Bioeng.,
74,90,1992
60.Chandy T., Sharma C. P.., Effect of liposome-albumin coatings on
ferric ion retention and release from chitosan beads., Biomaterials.,
17,61,1996
61.Huguet M. L., Groboillot A., Neufeld R., Ponceletj., D., Dellacherie
E., Hemoglobin Encapsulation in Chitosan/Calcium Alginate Beads.,
J. Appl. Polym. Sci., 51,1427,1994
62.Jameela S. R., Misra A., Jayakrishnan A., Cross-linked chitosan
microspheres as carriers for prolonged delivery macromolecular
drugs., J. Biomat. Sci-Polym E., 6,621,1994
63.Lin F. C., Wang D. M., Lai J. Y., Asymmetric TPX membranes with
high gas flux., J. Membrane Sci., 110,25,1996
64.Koros W. J., Fleming G. K., Membrane formation., J. membrane Sci.,
83,41,1993
65.Gear Andrew J. L., Hellewell T. B., Wright H.R., Mazzarese P. M.,
Arnold P. B., A new silver sulfadiazine water soluble gel., Burns.,
23,387,1997
66.Meana A., Iglesias J., et al., Large surface of cultured human
epithelium obtained on live fibroblast-containing fibrin gels., Burns.,
24,621,1998
67.Pesek S. C., Koros W. J., Aqueous quenched asymmetric polysulfone
membranes prepared by dry/wet phase separation., J. Membrane. Sci.,
81,71,1993
68.Mulder M., Basic Principles of Membrane Technology., Center for
Membrane Science and Technology., University of Twente., The
Netherlands., P.93, 1991
69.Kawakami H., Mikawa M., Nagoka S., Formation of skin layer of
asymmteric polyimide membrane and their gas transport properties., J.
Membrane Sci., 137,241,1997
70.Wu P., Fisher A. C., Foo P. P., Queen D., Gaylor J.D.S., In Vitro
assessment of water vapour transmission of synthetic wound
dressings.,Biomaterials.,16,171,1995
71. Wu P., Nelson E. A., Reid W. H., Ruckley C. V., Gaylor J.D.S., Water vapour transmission rates in burns and chronic leg ulcers: influence of wound dressings and comparison with in vitro evaluation., Biomaterials., 17,1373,1996
72. Young T. H. et al., Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid-liquid phase separation., Polymer.,
40,5011,1999
73. MacieiraCoelho A., Berumen L., and Avrameas S., Properties of
protein polymers as substratum for cell growth in vitro., J. Cell
Physiol., 83,379,1974.
74. Qurashi M. T., Blair H. S., Allen S. J., Studies on Modified chitosan membranes. II. Dialysis of low molecular weight metabolites., J. Appl. Polym. Sci., 46,263,1992
75. Kubota N. et al., Solid-phase modification of chitosan hydrogel
membrane & properties of modified chitosan membranes., J. Appl.
polym. Sci., 50,1665,1993
76. Loke W. K. et al., Wound dressing with sustained anti-microbial
capability., J. Biomed Mater Res., 53,8,2000