跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張柏揚
Po-Yang Chang
論文名稱: 光學鏡片模具之異型水路最佳化設計
Optimization of conformal cooling channels in optical-lens molds
指導教授: 鍾禎元
Chen-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 160
中文關鍵詞: 射出成型雷射積層成型異型水路FDM演算法RCFDM演算法SMDS演算法RGA演算法最佳化
外文關鍵詞: Injection moulding, RCFDM, SMDS
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠鏡片具有重量輕且大量生產的優點,因此大口徑非球面塑膠鏡片在光學工業上扮演重要的角色。射出成型製程是目前用於塑膠鏡片的主要生產技術,而高效率之冷卻水路則是模穴內均溫的關鍵。近年來,由於金屬積層製造技術的興起,使三維、高效率異型水路的製造得以實現,然而,異型水路的設計非常複雜,需結合最佳化分析,本研究整合有限元素分析,並透過FDM、RCFDM、SMDS、RGA等四種演算法搜尋冷卻水路配置的最佳化參數。

    依據模擬結果得知,使用FDM演算法最佳化可縮短3.92%的頂出時間,且可改善13.4%的表面溫差;使用RCFDM演算法最佳化可縮短9.14%的頂出時間,且可改善34.08%的表面溫差;使用SMDS演算法最佳化可縮短8.01%的頂出時間,且可改善32.28%的表面溫差;使用RGA演算法最佳化可縮短21.77%的頂出時間,且可改善45.5%的表面溫差。顯示本研究方法,若採用RGA最佳化異型水路為射出模具中冷卻水路之配置,對於鏡片開發時程的縮減與製造品質的提昇將能產生直接、明顯的效益。

    本研究係以Moldex3D模擬不同冷卻水路在相同的成型條件與模具配置下,因冷卻水路外觀走向不同所造成的溫度分佈、熱位移、冷卻時間、模具溫度差等結果;並且透過不同加工參數的變化調整,藉以改善塑膠光學鏡片之光學性質,達到良好的折射率並消除殘留應力與局部雙折射變異。


    Plastic lenses possess both light and mass-producing advantages, so the large diameter aspheric plastic lens plays an important role in the optical industry. Injection molding process is the popular technology in the plastic optical manufactures. High efficient cooling channel is the key factor of making a uniform temperature distribution in mold cavities. With the recent advent of laser additive manufacturing, fabrication of three-dimensional cooling channels, conformal cooling, becomes realizable. Still, the design of conformal cooling channels is very complex and requiring optimized analyses. This study combines the finite element analysis with four algorithms such as FDM, RCFDM, SMDS and RGA for searching the optimal parameters of cooling channel arrangement.

    According to the results of simulation, using FDM optimized analyses can shorten 3.92% of ejection time and decrease 13.4% of surface temperature difference. Using RCFDM optimized analyses can shorten 9.14% of ejection time and decrease 34.08% of surface temperature difference. Using SMDS optimized analyses can shorten 8.01% of ejection time and decrease 32.28% of surface temperature difference. Using RGA optimized analyses can shorten 21.77% of ejection time and decrease 45.5% of surface temperature difference. It shows the present study have considerable benefits on reducing the lens processing period and improving the lens manufacturing quality.

    This study simulates the temperature distribution, thermal displacement, cooling time and mold temperature difference of the different conformal cooling channels under the same processing conditions and mold configuration by Moldex3D. In order to achieve an acceptable refractive index; and eliminate the residual stress well as the local birefringence variation, the processing parameters will be adjusted to improve the optical properties of plastic optical lenses.

    摘要..................i Abstract..................ii 誌謝..................iv 目錄..................v 圖目錄..................ix 表目錄..................xv 第一章 緒論..................1 1.1 前言..................1 1.2 文獻回顧..................3 1.3 研究目的與方法..................6 1.3.1 研究目的..................6 1.3.2 研究方法..................6 1.4 論文架構..................9 第二章 基本原理..................10 2.1 前言..................10 2.2 射出成型..................10 2.2.1 塑膠射出成型..................10 2.2.2 射出成型循環週期..................13 2.3 熱傳方程式..................16 2.3.1 熱傳分析案例介紹..................16 2.3.2 熱傳分析之方程式..................19 2.4 最佳化理論..................22 2.4.1 最佳化與演算法介紹..................22 2.4.2 最佳化流程..................25 2.4.3 最佳化指令與Tcl/Tk語言..................29 第三章 建立模型、成型條件與最佳化..................30 3.1 前言..................30 3.2 鏡片模型與材料..................30 3.3 流道與澆口設計..................36 3.4 傳統水路與平面異型水路設計..................38 3.5 模座尺寸與材質選擇..................43 3.6 建立實體網格..................45 3.6.1 傳統水路實體網格..................45 3.6.2 平面異型水路實體網格..................46 3.6.3 最佳化之異型水路實體網格..................46 3.7 成型條件設定..................52 3.7.1 模流分析之成型條件設定..................52 3.7.2 熱傳分析之環境參數設定..................55 3.8 異型冷卻水路最佳化..................57 3.9 DOE成型條件最佳化..................61 第四章 結果與討論..................65 4.1 前言..................65 4.2 異型水路最佳化結果..................65 4.2.1 平面異型冷卻水路模擬結果..................65 4.2.2 利用FDM最佳化異型水路模擬結果..................68 4.2.3 利用RCFDM最佳化異型水路模擬結果..................71 4.2.4 利用SMDS最佳化異型水路模擬結果..................74 4.2.5 利用RGA最佳化異型水路模擬結果..................77 4.2.6 最佳化設計變數比較..................80 4.2.7 目標函數收斂曲線圖..................83 4.3 模流分析結果與討論..................85 4.3.1 流動波前圖..................85 4.3.2 縫合線與包封位置..................89 4.3.3 冷卻過程之溫度分析..................92 4.3.4 冷卻過程之冷卻時間..................99 4.3.5 冷卻過程之雷諾數..................105 4.3.6 冷卻過程之模穴表面溫度差..................111 4.3.7 冷卻過程之進出水口溫差..................117 4.3.8 翹曲變形之熱位移..................119 4.4 DOE成型條件最佳化結果..................122 第五章 結論與未來展望..................130 5.1 結論..................130 5.2 未來展望..................133 參考文獻..................135

    [1] B. Garrette and A. Karnani, “Challenges in marketing socially useful goods to the poor”, California Management Review, Vol. 52, No. 4, pp. 29-47, 2010.
    [2] T. Kohara, “Development of new cyclic olefin polymers for optical uses”, Macromolecular Symposia, Vol. 101, No. 1, pp. 571-579, 1996.
    [3] Y. B. Lee and T. H. Kwon, “Modeling and numerical of residual stresses and birefringence in injection molded center-gated disks”, Journal of Materials Processing Technology, Vol. 111, No. 1, pp. 214-218, 2001.
    [4] 周文祥,C-MOLD射出成型模具設計,初版,新文京開發出版有限公司,台北市,民國97年。
    [5] E. Sachs, S. Allen, M. Cima, E. Wylonis and H. Guo, “Production of injection molding tooling with conformal cooling channels using the three dimensional printing process”, Polymer Engineering and Science, Vol. 40, No. 5, pp. 1232-1247, 2000.
    [6] K. W. Dalgarno and T. D. Stewart, “Manufacture of production injection mould tooling institution conformal cooling channels via indirect selective laser sintering”, Proceeding of the Institution of Mechanical Engineers, Vol. 215, No. 5, pp. 1323-1332, 2001.
    [7] C. Yan and A. Hsu, “Introduction of composite technology, combining machining with selective laser melting for metal powder forming”, Molding Innovation, pp. 5-10, Feb. 2012.
    [8] F. H. Hsu, K. Wang, C. T. Huang and R. Y. Chang, “Investigation on conformal cooling system design in injection molding”, Advances in Production Engineering & Management, Vol. 8, No. 2, pp. 107-115, June 2013.
    [9] H. Qiao, “A systematic computer-aided approach to cooling system optimal design in plastic injection molding”, International Journal of Mechanical Sciences, Vol. 48, No. 4, pp. 430-439, 2006.
    [10] H.-S. Park and X.-P. Dang, “Optimization of conformal cooling channels with array of baffles for plastic injection mold”, International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 6, pp. 879-890, 2010.
    [11] X.-P. Dang and H.-S. Park, “Design of U-shape milled groove conformal cooling channels for plastic injection mold”, International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 1, pp. 73-84, 2011.
    [12] S. J. Park and T. H. Kwon, “Optimal cooling system design for the injection molding process”, Polymer Engineering & Science, Vol. 38, No. 9, pp. 1450-1462, 1998.
    [13] A. B. M. Saifullah and S. H. Masood, “Finite element thermal analysis of conformal cooling channels in injection moulding”, 5th Australasian Congress on Applied Mechanics, Vol. 1, pp. 337-341, December 2007.
    [14] C. G. Li and C. L. Li, “Plastic injection mould cooling system design by the configuration space method”, Computer-Aided Design, Vol. 40, No. 3, pp. 334-349, 2008.
    [15] Y. Wang, K.-M. Yu, C. C. L. Wang and Y. Zhang, “Automatic design of conformal cooling circuits for rapid tooling”, Computer-Aided Design, Vol. 43, No. 8, pp. 1001-1010, 2011.
    [16] C. G. Li, C. L. Li, Y. Liu and Y. Huang, “A new C-space method to automate the layout design of injection mould cooling system”, Computer-Aided Design, Vol. 44, No. 9, pp. 811-823, 2012.
    [17] O. A. Mohamed, S. H. Masood and A. Saifullah, “A Simulation Study of Conformal Cooling Channels in Plastic Injection Molding”, International Journal of Engineering Research, Vol. 2 , No. 5, pp. 344-348, Sept. 2013.
    [18] M. Hearunyakij, S. Sontikaew and D. Sriprapai, “Improvement in the Cooling Performance of Conformal Mold Cooling By Using Fin Concept”, International Journal of Mining、Metallurgy & Mechanical Engineering, Vol. 2, pp. 41-46, 2014.
    [19] Cooling of an Injection Mold, http://www.comsol.com/model/12371.
    [20] A. S. L. Chan, The design of Michell optimum structures, College of Aeronautics Cranfield, December 1960.
    [21] H.-S. Park and X.-P. Dang, “Design and Simulation-Based Optimization of Cooling Channels for Plastic Injection Mold”, International Journal of Precision Engineering and Manufacturing, Vol. No. 6, pp. 879-890, March 2012.
    [22] C.-C. A. Chen, J.-C. Tang and L.-M. Teng, “Effects of mold design of aspheric projector lens for head up display”, SPIE Optical Engineering Applications, International Society for Optics and Photonics, Aug. 2010.
    [23] H. E. Lai and P. J. Wang, “Study of process parameters on optical qualities for injection-molded plastic lenses”, Applied Optics, Vol. 47, No. 12, pp. 2017-2027, 2008.
    [24] J.-Y. Shieh, L. K. Wang and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses”, Optical review, Vol. 17, No. 4, pp. 399-403, 2010.
    [25] 柯仕盈,謝振榆,「大口徑非球面塑膠光學鏡片成型技術之研究」,國立虎尾科技大學,碩士論文,民國106年。
    [26] 鄭恩賜,劉明山,「隨形水路對大口徑非球面塑膠鏡片的影響」,逢甲大學,碩士論文,民國104年。
    [27] S. Mayer, “Optimised mould temperature control procedure using DMLS”, EOS whitepaper, EOS GmbH Ltd, pp. 1-10, 2005.
    [28] C.-C. A. Chen, L. T. Vu and Y.-T. Qiu, “Study on Injection Molding of Shell Mold for Aspheric Contact Lens Fabrication”, Procedia Engineering, Vol. 184, pp.344-349, 2017.
    [29] D.-C. Chen and C.-K. Huang, “Study of Injection Molding Warpage Using Analytic Hierarchy Process and Taguchi Method”, Advances in Technology Innovation, Vol. 1, No. 2, pp. 46-49, 2017.
    [30] C.-M. Lin and H.-K. Hsieh, “Processing optimization of Fresnel lenses manufacturing in the injection molding considering birefringence effect”, Microsystem Technologies, pp. 1-7, 2017.
    [31] P.-J. Wang, H.-E. Lai, 2007, “Study of residual birefringence in injection molded lenses”, SPE ANTEC, Vol. 4, pp. 2494-2498, 2007.
    [32] 積層製造系統:積層製造的優勢,雷尼紹股份有限公司(Renishaw resource centre),民國103年5月。取自: http://resources.renishaw.com/。

    QR CODE
    :::