跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳晉鴻
Ginn-Horng Chen
論文名稱: 交流非晶質碳化矽氫薄膜發光二極體之研製
Design and Fabrication of Alternating Current a-SiC:H Thin-Film Light-Emitting Diodes
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 67
中文關鍵詞: 發光二極體交流薄膜發光二極體
外文關鍵詞: ITO treatment, Thin Film Light Emitting Diodes, Alternating Current
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是研製交流非晶質薄膜發光二極體。在現階段,我們成功地運用一層很薄的本質非晶碳化矽氫做為發光層,且利用PECVD系統將ITO透明電極表面做氧電漿處理,提高ITO透明電極功函數並降低與本質非晶碳化矽氫之間的蕭特基位障。實驗結果顯示,適當的氧電漿處理確實能夠有效改善接觸電阻,大幅提升元件發光效率;若更進一步加以退火處理,使ITO透明電極再結晶而降低其片電阻值,則元件會有更佳的可靠度。同時我們也對元件做一系列電性量測,包括發光亮度、發光頻譜以及交流頻率響應等。量測結果顯示,不同大小的電壓及頻率幾乎不會改變發光波段,而且我們也發現當薄膜發光二極體操作在特定頻率範圍時,可有效提昇元件發光亮度。


    The a-SiC:H thin-film light-emitting diodes (TFLED) which could be operated under the alternating current (AC) power supply have been designed and fabricated in this study. So far, the intrinsic a-SiC:H layer has been successfully used as the radiative layer and the effects of treating indium-tin-oxide (ITO) electrode surface with O2-plasma on the TFLED performance has been investigated. The O2-plasma treatment of ITO electrode resulted in an increase of its work function, and the brightness of a plasma-treated device has been significantly increased at the same injected current. In addition, it has been found that sheet resistance of the ITO films after annealing was decreased, and the reliability of device could be improved obviously. The frequency response of the obtained devices has been studied too. The peak wavelength of electroluminescence (EL) spectrum was almost independent of applied-voltage amplitude and frequency, and a higher EL intensity of the device was observed when the device was operated under a particular frequency range. The role of the AC frequency for the EL intensity was discussed also.

    Table Captions...............................................................Ⅲ Figure Captions..............................................................Ⅳ Chapter 1 INTRODUTION........................................................1 Chapter 2 EXPERIMENTAL PROCEDURES............................................4 2.1 Preparations of Various Thin-Films........................................4 2.1.1 Deposition System.......................................................4 2.1.2 Film Depositions........................................................4 2.2 Device Synopsis...........................................................9 2.3 Device Fabrication.......................................................13 2.4 Measurement Techniques...................................................15 2.4.1 Optical Bandgap of Amorphous film......................................15 2.4.2 EL Intensity and Brightness............................................16 2.4.3 EL Spectrum and Frequency Response.....................................16 2.4.4 Brightness Under Alternating Current Operation.........................16 2.4.5 Electrical Circuit of Output Buffer....................................17 Chapter 3 RESULTS AND DISCUSSIONS...........................................23 3.1 Effects of O2-Plasma and Heat Treatments on ITO..........................23 3.1.1 Treating ITO with O2-plasmas having different RF power densities.......24 3.1.2 Treating ITO with O2-plasmas having different process durations........28 3.1.3 Post-plasma-treatment annealing........................................28 3.2 Current-Conduction Mechanism of the AC TFLED..........................31 3.2.1 Ideality Factor........................................................31 3.2.2 Low Electric-Field Region..............................................37 3.2.3 High Electric-Field Region.............................................39 3.3 B-J Characteristics......................................................39 3.4 EL Spectra...............................................................43 3.5 AC-Mode Measurement for Frequency Response...............................46 Chapter 4 CONCLUSION........................................................58 REFERENCES...................................................................60 APPENDIX Ⅰ..................................................................65

    [1] N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” 2nd ed., chap. 6, Oxford University Press, pp. 288, 1979.
    [2] J. I. Pankove and D. E. Carson, “Electroluminescence in Amorphous Silicon,” Appl. Phys. Lett., Vol. 29, pp. 620, 1976.
    [3] A. J. Rhodes, P. K. Bhat, I. G. Austin, T. M. Searle, and R. A. Gibson, “Luminescence Phenomena in a-Si:H p-i-n Junction,” J. Mon-Cryst. Solid, Vol. 59 & 60, pp. 365, 1983.
    [4] D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Visible-Light Injection-Electroluminescent a-SiC:H p-i-n Diode,” Jpn. J. Appl. Phys., Vol. 24, No. 10, pp. L806-L808, 1985.
    [5] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa “Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986
    [6] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
    [7] S. M. Paasche, T. Toyama, H. Okamoto, and Y. Hamakawa, “Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amorphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp. 2895, 1989.
    [8] Y. Z. Yang, D. D. Gebler, L. B. Lin, J. W. Blatchford, S. W. Jessen, H. L. Wang, and A. J. Epstein, “Alternating-Current Light-Emitting Devices Based on Conjugated Polymers,” Appl. Phys. Lett., Vol. 68, pp. 894-896, 1996.
    [9] H. L. Wang, F. Huang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, A. J. Epstein, “Application of Aluminum, Copper and Gold Electrodes in A.C. Polymer Light-Emitting Devices,” Synth. Met., Vol. 80, pp. 97-104, 1996.
    [10] A. J. Pal, R. Österbacka, K. M. Källman, and H. Stubb, “High-Frequency Response of Polymeric Light-Emitting Diodes,” Appl. Phys. Lett., Vol. 70, pp. 2022-2024, 1997.
    [11] I. D. Parker, “Carrier Tunneling and Device Characteristics in Polymer Light-Emitting Diodes,” J. Appl. Phys., Vol. 75, pp. 1656-1666, 1994.
    [12] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced Performance of Polymer Light-Emitting Diodes Using High-Surface area Polyaniline Network Electrodes,” J. Appl. Phys., Vol. 77, pp. 694-698, 1995.
    [13] I. Solomon, M. P. Schmidt, and H. Tran–Quoc, “Selective Low-Power Plasma Decomposition of Silane-Methane Mixtures for the Preparation of Methylated Amorphous Silicon,” Phys. Rev. B, Vol. 38, pp. 9895–9901, 1988
    [14] I. Pereyra and M. N. P. Carreño, “Wide Gap a-Si1−xCx:H Thin Films Obtained Under Starving Plasma Deposition Conditions,” J. Non-Cryst. Solids, Vol. 201, pp. 110-118, 1996.
    [15] I. Pereyra, C. A. Villacorta, and M. N. P. Carreño, “Highly Ordered Amorphous Silicon-Carbon Alloys Obtained by RF PECVD,” Brazillian Journal of Physics, Vol. 30, pp. 533-540, 2000.
    [16] J. Y. Chen, “The Effect of Graded-Gap and Barrier Layer Structure on the Electroluminescence Properties of a-SiC:H p-i-n Thin-Film Light Emitting Diode,” M. S. Thesis, NCU, Taiwan, R.O.C., 1992.
    [17] T. Osada, Th. Kugler, P. Bröms, and W. R. Salaneck, “Polymer-Based Light-Emitting Devices: Investigations on the Role of the Indium-Tin Oxide (ITO) Electrode,” Synth. Met., Vol. 96, pp. 77-80, 1998.
    [18] Kiyoshi Sugiyama, Hisao Ishii, Yukio Ouchi, and Kazuhiko Seki, “Dependence of Indium-Tin-Oxide Work Function on Surface Cleaning Method as Studied by Ultraviolet and X-ray Photoemission Spectroscopies,” J. Appl. Phys., Vol. 87, pp. 295-298, 2000.
    [19] Heh-Nan Lin, Sy-Hann Chen, Gung-Yeong Perng and Show-An Chen, “Nanoscale Surface Electrical Properties of Indium-Tin- Oxide Films for Organic Light Emitting Diodes Investigated by Conducting Atomic Force Microscopy,” J. Appl. Phys., Vol. 89, pp. 3976-3979, 2001.
    [20] J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
    [21] J. R. Sheas, H. Antoniadis, M. Hueschen, W. Leonard, J.Miller, R. Moon, D. Roitman, and A. Stocking, “Organic Electroluminescent Devices,” Science, vol. 273, pp. 884-888, 1996.
    [22] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and Degradation of Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 65, pp. 2922-2924, 1994.
    [23] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, “Degradation and Failure of MEH-PPV Light-Emitting Diodes,” J. Appl. Phys., vol. 79, pp. 2745-2751, 1996.
    [24] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “Surface Modification of Indium Tin Oxide by Plasma Treatment: An Effective Method to Improve the Efficiency, Brightness, and Reliability of Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 70, pp. 1348-1350, 1997.
    [25] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, “Surface Electronic Structure of Plasma-Treated Indium Tin Oxides,” Appl. Phys. Lett., vol. 78, pp. 2595-2597, 2001.
    [26] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, “Surface Oxidation Activates Indium Tin Oxide for Hole Injection,” J. Appl. Phys., vol. 87, pp. 572-576, 2000.
    [27] G. Y. Kim, J. S. Oh, E. H. Choi, G. S. Cho, S. O. Kang, and J. Cho, “Work Function Change on O2-plasma Treated Indium-Tin-Oxide,” Mater. Sci. Eng. B, Vol. 100, pp. 275-279, 2003.
    [28] K. B. Sundaram and Jila Blanchard, “Deposition and Annealing Studies of Indium Tin Oxide Films,” Southeastcon ’97. “Engineering new New Century”, Proceedings. IEEE 12-14. pp. 230-232, 1997.
    [29] D. V. Morgan, A. Salehi, Y. H. Aliyu, and R. W. Bunce, “Electro-Optical Characteristics of Indium Tin Oxide (ITO) Films : Effect of Thermal Annealing,” Renewable Energy, Vol. 7, pp. 205-208, 1996.
    [30] Li-jian Meng, A Macarico, and R Martins, “Study of Annealing Indium Tin Oxide Films Prepared by RF Reactive Magnetron Sputtering,” Vacuum, Vol. 46, pp. 673-680, 1995.
    [31] A. Rose, “Space-Charge-Limited Currents in Solids,” Phys. Rev., Vol. 97, pp. 1538-1544, 1955.
    [32] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed. New York : Wiley, pp. 402, 1981.
    [33] M. L. Hsu, “Thin-Film LED and Transistor Fabricated by Using a PECVD System with a Mesh,” M. S. Thesis, NCU, Taiwan, R.O.C., 1999.
    [34] J. Kanicki, “Amorphous and Microcrystalline Semiconductor Devices Volume Ⅱ : Materials and Device Physics,” Chap. 5, Artech House, 1992.
    [35] R. Österbacka, A. J. Pal, K.-M. Källman, and H. Stubb, “Frequency Response of Molecularly Thin Alternating Current Light-Emitting Diodes,” J. Appl. Phys., vol. 83, pp. 1748-1752, 1998.
    [36] Jong-Wook Lee and Koeng Su Lim, “Ex Situ Hydrogen Passivation Effect of Visible p-i-n Type Thin-Film Light-Emitting Diode Characteristics,” J. Appl. Phys., vol. 81, pp. 2432-2436, 1997.

    QR CODE
    :::