跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林智勝
Chih-sheng Lin
論文名稱: 抗隨機指向向量誤差之強健式限制最佳化束波形成器設計
Robust Constrained Optimization Based Beamformer Design Against Random Steering Vector Error
指導教授: 蔡木金
Mu-king Tsay
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 廣義旁瓣消除器干擾抑制限制最佳化問題擾動分析束波形成
外文關鍵詞: Generalized-Sidelobe Canceller, Constrained Optimization, Perturbation Analysis, Beamforming, Interference Suppression
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文針對隨機指向向量誤差對可適性束波形成技術造成負面影響的現象,利用接收到的訊號源資料且根據限制最佳化方式,提出可抑制干擾且保留想要訊號的強健式束波形成器,並且藉由廣義旁瓣消除器GSC (Generalized-Sidelobe Canceller)將限制最佳化問題轉換為等效的無限制最佳化問題。透過矩陣擾動分析 (Matrix Perturbation Analysis)技術可獲得可適性權重向量的近似封閉解,而封閉解有利我們對系統做效能分析。從推導出的理論SINR (Signal to Interference-plus-Noise Ratio)近似封閉表示式可看出,當系統遭受隨機指向向量誤差影響的情況之下,本篇論文所提的方法相較於無強健束波形成器在SINR方面有顯著的改善。最後,模擬結果將會證明強健式GSC束波形成技術在效能上的改善並且證實理論SINR之準確性。


    We consider adaptive array beamforming, in the scenario that the steering vector error caused by random phase error. By exploiting the received source data, we propose a constrained-optimization based beamformer which can suppress interference and preserve desired signal. The optimization problem is formulated in an equivalent unconstrained generalize-sidelobe canceller (GSC) structure. The approximated closed-form solution of adaptive weight can be obtained through matrix perturbation analysis, this allows us to facilitate an associated performance analysis. A closed-form approximate SINR for the proposed robust GSC beamformer is given, and the achievable SINR improvement over non-robust counterpart is specified. Finally, simulation results confirm the effectiveness of the proposed method and corroborate the predicted SINR results.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1-1 研究動機與貢獻 1 1-2 論文架構 3 第二章 天線陣列之訊號處理基本概念 4 2-1 訊號模型 4 2-2 可適性束波形成技術 6 2-2-1 MVDR束波形成技術 7 2-2-2 LCMV束波形成技術 9 2-3 訊號相消現象 11 2-4 指向錯誤之影響 13 第三章 廣義旁瓣消除器束波形成技術 16 3-1 基本概念 16 3-2 數學模型 17 第四章 強建式限制最佳化束波形成器之設計 23 4-1環境初始定義 23 4-2 強健式GSC束波形成器 24 4-2-1擾動指向向量之定義 24 4-2-2 強健式GSC束波形成技術之數學模型 25 4-2-3 討論與分析 29 第五章 效能分析 32 5-1 輸出SINR之分析 32 5-2 輸出SINR之改善 35 5-3 討論與分析 37 5-4 複雜度比較 38 第六章 模擬結果分析 40 6-1 隨機相位誤差為白雜訊 40 6-1-1 束波場型模擬結果 40 6-1-2 輸出SINR模擬結果 51 6-2 隨機相位誤差為非白雜訊 55 6-2-1 束波場型模擬結果 55 6-2-2 輸出SINR模擬結果 66 6-3 理論SINR公式之驗證 70 第七章 結論 72 參考文獻 73 附錄一 75 附錄二 76 附錄三 79 附錄四 81 附錄五 84 附錄六 86

    [1] H. Cox, R. M. Zeskind, and M. M. Owen, “Robust array beamforming,” IEEE Tran. Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 10, pp. 1965-1374, Oct 1987.
    [2] N. K. Jablon, “Adaptive beamforming with the generalized sidelob canceller in the presence of array imperfections,” IEEE Trans. Antennas and Propagation, vol. AP-35, no. 8, pp. 996-1012, Aug. 1986.
    [3] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal loading,” IEEE Trans. Signal Processing, vol. 51, no. 7, pp. 1702-1715, July 2003.
    [4] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice Hall, Inc., 2002.
    [5] G. H. Colub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins Univ. Press, 1996.
    [6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, U.K.: Cambridge Univ. Press, 1985.
    [7] J. R. Schott, Matrix Analysis for Statistics, 2nd ed., John Wiley & Sons.
    [8] C. C. Lee and J. H. Lee, “Robust adaptive array beamforming under steering vector errors,” IEEE Trans. Antennas and Propagation, vol. 45, no. 1, pp. 168-175, Jan. 1997.
    [9] J. H. Lee and K. P. Cheng, “Adaptive array beamforming with robust capabilities under random phase perturbation,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 365-371, Jan. 2005.
    [10] Z. Tian, K. L. Bell, and H. L. Van Trees, “Robust constrained linear receivers for CDMA wireless systems,” IEEE Trans. Signal Processing, vol. 49, no. 7, pp. 1510-1522, July 2001.
    [11] F. and R. J. Vaccaro, “Performance analysis for DOA estimation algorithms: Unification, simplification, and observations,” IEEE Trans. Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1170-1184, Oct. 1993.
    [12] A. Elnashar, S. M. Elnoubi, and H. A. El-Mikati, “Further study on robust adaptive beamforming with optimum diagonal loading,” IEEE Trans. Antenna and Propagation, vol. 54, no. 12, Dec 2006.
    [13] C. Y. Lin, J. Y. Wu, and T. S. Lee, “Robust constrained-optimization based linear receiver for high-rate MIMO-OFDM against channel estimation errors,” IEEE Trans. Signal Processing, vol. 55, no. 6, pp. 2628-2645, June 2007.
    [14] B. D. Van and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, issue 2, pp. 4-24, 1988.
    [15] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo, “Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem,” IEEE Trans. Signal Processing, vol. 51, no. 2, pp. 313-324, Fed. 2003.
    [16] Z. Tian, K. L. Bell, and H. L. Van Trees, “A recursive least squares implementation for LCMP beamformer under quadratic constraint, ” IEEE Trans. Signal Processing, vol. 49, no. 6, pp. 1138-1145, June 2001.
    [17] J. B. Schodorf and D. B. Williams, “A constrained optimization approach to multiuser detection,” IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 258-262, Jan. 1997.
    [18] R. G. Lorenz and S. P. Boyd, “Robust minimum variance beamforming,” IEEE Trans. Signal Processing, vol. 53, no. 5, pp. 1684-1696, May 2005.
    [19] J. Li and P. Stoica, Robust Adaptive Beamforming, John Wiley & Sons, Inc., 2006.
    [20] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall PTR, 1993.
    [21] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice-Hall PTR, 1998.
    [22] Z. Xu, “Further study on MOE-based multiuser detection in unknown multipath,” EURASIP Journal on Applied Signal Processing, vol. 2002, issue 1, pp. 1377-1386, Jan 2002.

    QR CODE
    :::