跳到主要內容

簡易檢索 / 詳目顯示

研究生: 譚麗雅
Vidhya Tangeda
論文名稱: 線粒體 Lon 通過調節口腔癌中的鈣信號來驅動順鉑耐藥
Mitochondrial Lon drives cisplatin resistance by regulating calcium signaling in oral cancer
指導教授: 李岳倫
Alan Yueh-Luen Lee
高永旭
Yung-Hsi Kao
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 90
中文關鍵詞: 線粒體LonNCLX順鉑耐藥鈣信號
外文關鍵詞: Mitochondria, Lon, NCLX, Cisplatin resistance, Calcium signaling
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cisplatin is the first-line chemotherapy drug for oral cancer treatment, but patients have always been a problem to be solved for patients with recurrence and drug resistance after cisplatin treatment. Since cisplatin kills cancer cells because it produces oxidative radicals, which in turn damage DNA and causes cell death, and because mitochondria are the most important source of oxidative radicals produced within cells, we explore in this paper how the mitochondrial pressure protein Lon affects the mechanism of action of cisplatin resistance by regulating oxidative stress. The findings of this paper show that cisplatin treatment causes addition modifications to mitochondrial DNA formation, which leads to mitochondrial incapacitation and induces oxidative stress. It was found that cisplatin-induced oxidative pressure increased the performance of Lon protein in oral cancer cells, while increased Lon led to the production of cisplatin resistance; conversely, the decreased content of Lon made cancer cells sensitive to cisplatin. Next, an increase in cisplatin-induced oxidative pressure was observed, resulting in a decrease in the concentration of calcium ions in the mitochondria, and with an increase in Lon, the granules calcium ions were discharged from the mitochondrium through the Lon activation calcium ion discharge channel NCLX, thereby increasing the concentration of calcium ions in the cytoplasm. As a result, an increase in calcium ions in the cytoplasm activates the tyrosine kinase PYK2, as well as downstream SRC-STAT3 pathways, and activates the anti-apoptotic protein Bcl-2 and the inflammatory cytokine IL-6. Through its companion protein function, Lon binds directly to NCLX and stabilizes NCLX and activates its function. Indeed, the use of the NCLX inhibitor CGP37157 attenuates the Lon-activated calcium ion message pathway and increases the sensitivity of cancer cells to cytotoxicity of cisplatin. Animal experiments have confirmed that high Lon manifestations in cancer cells increase cisplatin resistance, which can be overcome by inhibiting NCLX and reducing mitochondrial calcium concentrations. At the clinical end, protein expression of Lon and NCLX was found to be positively correlated in the expression of the two in tumor tissues of patients with oral cancer. In summary, this paper has found a novel mechanism of resistance to cisplatin by mitochondrial Lon, which affects NCLX activity by binding and regulating mitochondrial calcium ion concentrations to overcome drug resistance caused by cell death. In the future, it is expected that Lon inhibitors can be used to solve the potential use of cisplatin resistance, and it is hoped that they can be applied to oral cancer patients with chemotherapy resistance and obtain better clinical treatment results.


    Cisplatin is a first-line chemotherapeutic drug for oral cancer treatment but the resistance is still a persistent problem to be addressed. As mitochondria are the important source of the drug (cisplatin) induced oxidative stress; here, we explored the mechanisms of mitochondrial matrix stress-response protein Lon's role in cisplatin resistance. Our results showed that cisplatin-formed mtDNA adducts led to mitochondrial dysfunction and induced oxidative stress. Cisplatin-induced oxidative stress upregulated Lon protein expression in oral cancer cells. Upregulation of Lon increased cisplatin resistance; on the contrary, Lon downregulation sensitized cells to cisplatin. Next, we observed that cisplatin-induced mitochondrial dysfunction accumulated excess mitochondrial calcium, intriguingly Lon upregulation effluxes this calcium through activation of NCLX, a major mitochondrial calcium exchanger, and thereby increased intracellular calcium. The increase in cytosol calcium, activated tyrosine kinase PYK2 and its downstream SRC-STAT3 axis to trigger an anti-apoptotic protein Bcl-2 and an inflammatory cytokine IL-6. Lon directly interacted with and stabilized NCLX through its chaperone function. NCLX inhibitor CGP37157 attenuated calcium signaling induced by Lon and sensitized cancer cells to cisplatin cytotoxicity. In vivo studies confirmed that cancer cells with Lon upregulation are resistant to cisplatin and this resistance overcame by inhibition of NCLX. In clinical, the expression of Lon and NCLX is also positively correlated with that observed in oral cancer patient tumors. In summary, this study unveils the novel retrograde signaling activated by mitochondrial Lon towards resistance to cisplatin-induced DNA damage stress, indicating the potential use of Lon Inhibitors for better clinical outcomes in chemo-resistant cancer

    Table of contents Abstract …………………………………………………………………………………………i, ii Acknowledgement ……………………………………………………………………................ iii Table of contents ………………………………………………………………………………… iv List of figures …………………………………………………………………………………… vii Abbreviations ………………………………………………………………………………….. viii Chapter I. Introduction …………………………………………………………………................ 1 1.1 Cisplatin mechanism of action ………………………………………………………. 1 1.2 Cisplatin resistant mechanisms ………………………………………......................... 1 1.3 Lon role in tumor ……………………………………………………………………. 2 1.4 Structural and functional aspects of Lon …………………………………...................3 1.5 Calcium role in mitochondria ……………………………………………................... 5 1.6 NCLX structure, function and its regulation by kinases ……………………………...6 1.7 PYK2 role in tumorigenesis …………………………………………………………..8 1.8 Research Objectives …………………………………………………………............. 9 Chapter II. Material and Methods ………………………………………………………………. 10 2.1 Cell Culture details ……………………………………………………………….…. 10 2.2 List of antibodies and reagents ………………………………………………………10 2.3 Plasmids ……………………………………………………………………..............12 2.4 MTS assay …………………………………………………………………………. .12 2.5 Western blot ………………………………………………………………………….13 2.6 Transfection methods………………………………………………………………...13 2.7 Immunofluorescence assay…………………………………………………………. 13 2.8 Calcium assay ……………………………………………………………………….14 2.9 Mitochondrial ROS detection ………………………………………………………..15 2.10 GST pull down assay ……………………………………………………………….16 2.11 In vivo tumor xenograft model ……………………………………………………..16 2.12 Patients and clinical samples procurement………………………………………….17 2.13 Immunohistochemistry assay……………………………………………………….17 2.14 Statistical analysis ………………………………………………………………….17 Chapter III. Results ………………………………………………………………………………18 3.1 Cisplatin damages mtDNA by forming adducts and produce oxidative stress ………18 3.2 Cisplatin-induced mitochondrial dysfunction promotes stress response protein Lon ………………………………………………………………………………………….. 18 3.3 Lon contributes to cisplatin resistance in OSCC cells ……………………………... 19 3.4 Cisplatin-induced mitochondrial dysfunction increased cytosol calcium through Lon mediated activation of NCLX…………………………………………………………... 19 3.5 Lon release excess mitochondrial calcium to cytosol through NCLX under cisplatin treated conditions ………………………………………………………………………..20 3.6 Lon stimulates calcium mediated PYK2-SRC-STAT3 pathway to promote survival of cell after cisplatin treatment…….………………………………………………….......... 21 3.7 Validation of Lon mediated activation of PYK2-SRC-STAT3 pathway……………. 22 3.8 Mitochondria Lon-induced cisplatin resistance is mediated by mitochondria Ca2+- dependent signaling..……………………………………………………………………. 22 3.9 Mitochondrial Lon positively regulates NCLX protein expression…….…………... 23 3.10 NCLX activation is mediated by Lon through direct interaction.………………….. 24 3.11 Lon stabilizes NCLX through its chaperone function……….……………………. .24 3.12 Lon involvement in cisplatin resistance through NCLX is validated In vivo ……... 24 3.13 Clinical evaluation of Lon and NCLX expression in oral tumors ………………….25 Chapter IV. Discussion …………………………………………………………………………. 27 Chapter V. Figures and Legends …………………………………………………………………32 Chapter VI. Conclusion ………………………………………………………………………….53 Chapter VII. Future Prospects ……………………………………………………………………54 Bibliography ……………………………………………………………………………………..55 Achievements ……………………………………………………………………………………62

    1 Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action.
    Eur J Pharmacol 740, 364-378, doi:10.1016/j.ejphar.2014.07.025 (2014).
    2 Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene
    22, 7265-7279, doi:10.1038/sj.onc.1206933 (2003).
    3 Galluzzi, L. et al. Systems biology of cisplatin resistance: past, present and future. Cell Death
    Dis 5, e1257, doi:10.1038/cddis.2013.428 (2014).
    4 Marullo, R. et al. Cisplatin induces a mitochondrial-ROS response that contributes to
    cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS one 8,
    e81162, doi:10.1371/journal.pone.0081162 (2013).
    5 Pabla, N. & Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.
    Kidney Int 73, 994-1007, doi:10.1038/sj.ki.5002786 (2008).
    6 Wang, C., Liu, X. Q., Hou, J. S., Wang, J. N. & Huang, H. Z. Molecular Mechanisms of
    Chemoresistance in Oral Cancer. Chin J Dent Res 19, 25-33, doi:10.3290/j.cjdr.a35694
    (2016).
    7 Lippert, T. H., Ruoff, H. J. & Volm, M. Intrinsic and acquired drug resistance in malignant
    tumors. The main reason for therapeutic failure. Arzneimittelforschung 58, 261-264,
    doi:10.1055/s-0031-1296504 (2008).
    8 Galluzzi, L. et al. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869-1883,
    doi:10.1038/onc.2011.384 (2012).
    9 Lu, H. et al. Chemotherapy-Induced Ca(2+) Release Stimulates Breast Cancer Stem Cell
    Enrichment. Cell reports 18, 1946-1957, doi:10.1016/j.celrep.2017.02.001 (2017).
    10 Guaragnella, N., Giannattasio, S. & Moro, L. Mitochondrial dysfunction in cancer
    chemoresistance. Biochem Pharmacol 92, 62-72, doi:10.1016/j.bcp.2014.07.027 (2014).
    11 Zhang, Y. & Maurizi, M. R. Mitochondrial ClpP activity is required for cisplatin resistance
    in human cells. Biochimica et biophysica acta 1862, 252-264,
    doi:10.1016/j.bbadis.2015.12.005 (2016).
    12 Guerra, F. et al. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-toMesenchymal Transition in Cancer. Front Oncol 7, 295, doi:10.3389/fonc.2017.00295
    (2017).
    13 Venkatesh, S., Lee, J., Singh, K., Lee, I. & Suzuki, C. K. Multitasking in the mitochondrion
    by the ATP-dependent Lon protease. Biochimica et biophysica acta 1823, 56-66,
    doi:10.1016/j.bbamcr.2011.11.003 (2012).
    14 Ngo, J. K. & Davies, K. J. Mitochondrial Lon protease is a human stress protein. Free radical
    biology & medicine 46, 1042-1048, doi:10.1016/j.freeradbiomed.2008.12.024 (2009).
    15 Hori, O. et al. Transmission of cell stress from endoplasmic reticulum to mitochondria:
    enhanced expression of Lon protease. J Cell Biol 157, 1151-1160, doi:10.1083/jcb.200108103
    (2002).
    16 Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of
    respiration in hypoxic cells. Cell 129, 111-122 (2007).
    56
    17 Cheng, C. W. et al. Overexpression of Lon contributes to survival and aggressive phenotype
    of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen
    species. Cell Death Dis 4, e681, doi:10.1038/cddis.2013.204 (2013).
    18 Wang, H. M. et al. Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer
    cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints.
    Cancer Sci 101, 2612-2620, doi:10.1111/j.1349-7006.2010.01701.x [doi] (2010).
    19 Bernstein, S. H. et al. The mitochondrial ATP-dependent Lon protease: a novel target in
    lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119,
    3321-3329, doi:10.1182/blood-2011-02-340075 (2012).
    20 Kuo, C. L. et al. Mitochondrial oxidative stress by Lon-PYCR1 maintains an
    immunosuppressive tumor microenvironment that promotes cancer progression and
    metastasis. Cancer letters 474, 138-150, doi:10.1016/j.canlet.2020.01.019 (2020).
    21 Liu, Y. et al. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by
    promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of
    Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 5, 11209-
    11224, doi:10.18632/oncotarget.2026 (2014).
    22 Polo, M. et al. Lon protease: a novel mitochondrial matrix protein in the interconnection
    between drug-induced mitochondrial dysfunction and endoplasmic reticulum stress. British
    journal of pharmacology 174, 4409-4429, doi:10.1111/bph.14045 (2017).
    23 Gibellini, L. et al. Inhibition of Lon protease by triterpenoids alters mitochondria and is
    associated to cell death in human cancer cells. Oncotarget 6, 25466-25483,
    doi:10.18632/oncotarget.4510 (2015).
    24 Pinti, M. et al. Emerging role of Lon protease as a master regulator of mitochondrial functions.
    Biochimica et biophysica acta 1857, 1300-1306, doi:10.1016/j.bbabio.2016.03.025 (2016).
    25 Wang, N., Maurizi, M. R., Emmert-Buck, L. & Gottesman, M. M. Synthesis, processing, and
    localization of human Lon protease. J Biol Chem 269, 29308-29313 (1994).
    26 Matsushima, Y. et al. Mitochondrial Lon protease is a gatekeeper for proteins newly imported
    into the matrix. Commun Biol 4, 974, doi:10.1038/s42003-021-02498-z (2021).
    27 Lee, I. & Suzuki, C. K. Functional mechanics of the ATP-dependent Lon protease- lessons
    from endogenous protein and synthetic peptide substrates. Biochimica et biophysica acta
    1784, 727-735, doi:10.1016/j.bbapap.2008.02.010 (2008).
    28 Cha, S. S. et al. Crystal structure of Lon protease: molecular architecture of gated entry to a
    sequestered degradation chamber. EMBO J 29, 3520-3530, doi:10.1038/emboj.2010.226
    (2010).
    29 Bota, D. A. & Davies, K. J. Lon protease preferentially degrades oxidized mitochondrial
    aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4, 674-680, doi:10.1038/ncb836
    (2002).
    30 Lu, B. et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and
    promotes degradation by the AAA+ Lon protease. Mol Cell 49, 121-132,
    doi:10.1016/j.molcel.2012.10.023 (2013).
    57
    31 Sung, Y. J. et al. Mitochondrial Lon sequesters and stabilizes p53 in the matrix to restrain
    apoptosis under oxidative stress via its chaperone activity. Cell Death Dis 9, 697,
    doi:10.1038/s41419-018-0730-7 (2018).
    32 Rep, M. et al. Promotion of mitochondrial membrane complex assembly by a proteolytically
    inactive yeast Lon. Science 274, 103-106, doi:10.1126/science.274.5284.103 (1996).
    33 Shin, C. S. et al. LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding.
    Nat Commun 12, 265, doi:10.1038/s41467-020-20597-z (2021).
    34 Quiros, P. M. et al. ATP-dependent Lon protease controls tumor bioenergetics by
    reprogramming mitochondrial activity. Cell reports 8, 542-556,
    doi:10.1016/j.celrep.2014.06.018 (2014).
    35 Clapham, D. E. Calcium signaling. Cell 80, 259-268, doi:10.1016/0092-8674(95)90408-5
    (1995).
    36 Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics,
    homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529, doi:10.1038/nrm1155
    (2003).
    37 Santo-Domingo, J. & Demaurex, N. Calcium uptake mechanisms of mitochondria.
    Biochimica et biophysica acta 1797, 907-912, doi:10.1016/j.bbabio.2010.01.005 (2010).
    38 Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and
    regulators of calcium signalling. Nat Rev Mol Cell Biol 13, 566-578, doi:10.1038/nrm3412
    (2012).
    39 Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: The importance of ER
    membrane contact sites. Science 361, doi:10.1126/science.aan5835 (2018).
    40 Katoshevski, T., Ben-Kasus Nissim, T. & Sekler, I. Recent studies on NCLX in health and
    diseases. Cell Calcium 94, 102345, doi:10.1016/j.ceca.2020.102345 (2021).
    41 Territo, P. R., Mootha, V. K., French, S. A. & Balaban, R. S. Ca(2+) activation of heart
    mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell
    Physiol 278, C423-435, doi:10.1152/ajpcell.2000.278.2.C423 (2000).
    42 McCormack, J. G. & Denton, R. M. The role of Ca2+ ions in the regulation of
    intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem 89, 121-
    125 (1989).
    43 Giorgi, C., Romagnoli, A., Pinton, P. & Rizzuto, R. Ca2+ signaling, mitochondria and cell
    death. Curr Mol Med 8, 119-130, doi:10.2174/156652408783769571 (2008).
    44 Brandes, R. & Bers, D. M. Simultaneous measurements of mitochondrial NADH and Ca(2+)
    during increased work in intact rat heart trabeculae. Biophys J 83, 587-604,
    doi:10.1016/S0006-3495(02)75194-1 (2002).
    45 Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and permeability
    transition. Physiol Rev 79, 1127-1155, doi:10.1152/physrev.1999.79.4.1127 (1999).
    46 De Marchi, U. et al. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion,
    thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J
    Biol Chem 289, 20377-20385, doi:10.1074/jbc.M113.540898 (2014).
    58
    47 Cai, X. & Lytton, J. Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+
    exchanger gene family, NCKX6. J Biol Chem 279, 5867-5876, doi:10.1074/jbc.M310908200
    (2004).
    48 Palty, R. et al. Lithium-calcium exchange is mediated by a distinct potassium-independent
    sodium-calcium exchanger. J Biol Chem 279, 25234-25240, doi:10.1074/jbc.M401229200
    (2004).
    49 Boyman, L., Williams, G. S., Khananshvili, D., Sekler, I. & Lederer, W. J. NCLX: the
    mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 59, 205-213,
    doi:10.1016/j.yjmcc.2013.03.012 (2013).
    50 Ben-Kasus Nissim, T. et al. Mitochondria control store-operated Ca(2+) entry through Na(+)
    and redox signals. EMBO J 36, 797-815, doi:10.15252/embj.201592481 (2017).
    51 Gandhi, S. et al. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to
    calcium-induced cell death. Mol Cell 33, 627-638, doi:10.1016/j.molcel.2009.02.013 (2009).
    52 Kostic, M. et al. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload
    and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons. Cell
    reports 13, 376-386, doi:10.1016/j.celrep.2015.08.079 (2015).
    53 Pathak, T. et al. Dichotomous role of the human mitochondrial Na(+)/Ca2(+)/Li(+) exchanger
    NCLX in colorectal cancer growth and metastasis. Elife 9, doi:10.7554/eLife.59686 (2020).
    54 Shen, T. & Guo, Q. Role of Pyk2 in Human Cancers. Med Sci Monit 24, 8172-8182,
    doi:10.12659/MSM.913479 (2018).
    55 Naser, R., Aldehaiman, A., Diaz-Galicia, E. & Arold, S. T. Endogenous Control Mechanisms
    of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 10,
    doi:10.3390/cancers10060196 (2018).
    56 Datta, A. et al. Selective targeting of FAK-Pyk2 axis by alpha-naphthoflavone abrogates
    doxorubicin resistance in breast cancer cells. Cancer letters 362, 25-35,
    doi:10.1016/j.canlet.2015.03.009 (2015).
    57 Cui, X. D. et al. Activation of mammalian target of rapamycin complex 1 (mTORC1) and
    Raf/Pyk2 by growth factor-mediated Eph receptor 2 (EphA2) is required for
    cholangiocarcinoma growth and metastasis. Hepatology 57, 2248-2260,
    doi:10.1002/hep.26253 (2013).
    58 Ren, X. R. et al. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting
    with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP
    protein. J Cell Biol 152, 971-984, doi:10.1083/jcb.152.5.971 (2001).
    59 Liu, F. Y. et al. CCR7 regulates cell migration and invasion through JAK2/STAT3 in
    metastatic squamous cell carcinoma of the head and neck. Biomed Res Int 2014, 415375,
    doi:10.1155/2014/415375 (2014).
    60 Wu, J. et al. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and
    endoplasmic reticulum. Biochem J 464, 13-22, doi:10.1042/bj20140931 (2014).
    61 Crowe, A. R. & Yue, W. Semi-quantitative Determination of Protein Expression using
    Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 9,
    doi:10.21769/BioProtoc.3465 (2019).
    59
    62 Kleih, M. et al. Direct impact of cisplatin on mitochondria induces ROS production that
    dictates cell fate of ovarian cancer cells. Cell Death Dis 10, 851, doi:10.1038/s41419-019-
    2081-4 (2019).
    63 Ruchko, M. V., Gorodnya, O. M., Zuleta, A., Pastukh, V. M. & Gillespie, M. N. The DNA
    glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in
    pulmonary artery endothelial cells. Free radical biology & medicine 50, 1107-1113,
    doi:10.1016/j.freeradbiomed.2010.10.692 (2011).
    64 Valavanidis, A., Vlachogianni, T. & Fiotakis, C. 8-hydroxy-2' -deoxyguanosine (8-OHdG):
    A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ
    Carcinog Ecotoxicol Rev 27, 120-139, doi:10.1080/10590500902885684 (2009).
    65 Chappell, N. P. et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian
    cancer. Journal of proteome research 11, 4605-4614, doi:10.1021/pr300403d (2012).
    66 Pubill, D. et al. ATP induces intracellular calcium increases and actin cytoskeleton
    disaggregation via P2x receptors. Cell Calcium 29, 299-309, doi:10.1054/ceca.2000.0194
    (2001).
    67 Nagai, T., Sawano, A., Park, E. S. & Miyawaki, A. Circularly permuted green fluorescent
    proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98, 3197-3202,
    doi:10.1073/pnas.051636098 (2001).
    68 Bohler, P. et al. The mycotoxin phomoxanthone A disturbs the form and function of the inner
    mitochondrial membrane. Cell Death Dis 9, 286, doi:10.1038/s41419-018-0312-8 (2018).
    69 Blaukat, A. et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific
    mitogen-activated protein kinase cascades. J Biol Chem 274, 14893-14901,
    doi:10.1074/jbc.274.21.14893 (1999).
    70 Dagda, R. K. et al. Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through
    protein kinase A. J Neurochem 128, 864-877, doi:10.1111/jnc.12494 (2014).
    71 Thomas, R. E., Andrews, L. A., Burman, J. L., Lin, W. Y. & Pallanck, L. J. PINK1-Parkin
    pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS
    Genet 10, e1004279, doi:10.1371/journal.pgen.1004279 (2014).
    72 Sung, Y. J. et al. Mitochondrial Lon sequesters and stabilizes p53 in the matrix to restrain
    apoptosis under oxidative stress via its chaperone activity. Cell Death & Disease 9, 697,
    doi:10.1038/s41419-018-0730-7 (2018).
    73 Kao, T. Y. et al. Mitochondrial Lon regulates apoptosis through the association with Hsp60-
    mtHsp70 complex. Cell Death Dis 6, e1642, doi:10.1038/cddis.2015.9 (2015).
    74 Ambro, L. et al. Mutations to a glycine loop in the catalytic site of human Lon changes its
    protease, peptidase and ATPase activities. FEBS J 281, 1784-1797, doi:10.1111/febs.12740
    (2014).
    75 Cocetta, V., Ragazzi, E. & Montopoli, M. Mitochondrial Involvement in Cisplatin Resistance.
    Int J Mol Sci 20, doi:10.3390/ijms20143384 (2019).
    76 Hamon, M. P., Bulteau, A. L. & Friguet, B. Mitochondrial proteases and protein quality
    control in ageing and longevity. Ageing Res Rev 23, 56-66, doi:10.1016/j.arr.2014.12.010
    (2015).
    60
    77 Pinti, M. et al. Functional characterization of the promoter of the human Lon protease gene.
    Mitochondrion 11, 200-206, doi:10.1016/j.mito.2010.09.010 (2011).
    78 O'Malley, J., Kumar, R., Inigo, J., Yadava, N. & Chandra, D. Mitochondrial Stress Response
    and Cancer. Trends Cancer 6, 688-701, doi:10.1016/j.trecan.2020.04.009 (2020).
    79 Voos, W. & Pollecker, K. The Mitochondrial Lon Protease: Novel Functions off the Beaten
    Track? Biomolecules 10, doi:10.3390/biom10020253 (2020).
    80 Yu, W. et al. Cisplatin generates oxidative stress which is accompanied by rapid shifts in
    central carbon metabolism. Sci Rep 8, 4306, doi:10.1038/s41598-018-22640-y (2018).
    81 De Gaetano, A. et al. Impaired Mitochondrial Morphology and Functionality in Lonp1(wt/-)
    Mice. J Clin Med 9, doi:10.3390/jcm9061783 (2020).
    82 Kerkhofs, M. et al. Emerging molecular mechanisms in chemotherapy: Ca(2+) signaling at
    the mitochondria-associated endoplasmic reticulum membranes. 9, 334, doi:10.1038/s41419-
    017-0179-0 (2018).
    83 Chen, L. et al. HINT2 triggers mitochondrial Ca(2+) influx by regulating the mitochondrial
    Ca(2+) uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic
    cancer. Cancer letters 411, 106-116, doi:10.1016/j.canlet.2017.09.020 (2017).
    84 Ren, T. et al. MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway
    to promote ROS production and metastasis of HCC cells. Oncogene 36, 5897-5909,
    doi:10.1038/onc.2017.167 (2017).
    85 Pathak, T. & Trebak, M. Mitochondrial Ca(2+) signaling. Pharmacology & therapeutics 192,
    112-123, doi:10.1016/j.pharmthera.2018.07.001 (2018).
    86 Perez Koldenkova, V. & Nagai, T. Genetically encoded Ca(2+) indicators: properties and
    evaluation. Biochimica et biophysica acta 1833, 1787-1797,
    doi:10.1016/j.bbamcr.2013.01.011 (2013).
    87 Kostic, M., Katoshevski, T. & Sekler, I. Allosteric Regulation of NCLX by Mitochondrial
    Membrane Potential Links the Metabolic State and Ca(2+) Signaling in Mitochondria. Cell
    reports 25, 3465-3475.e3464, doi:10.1016/j.celrep.2018.11.084 (2018).
    88 Luongo, T. S. et al. The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+)
    homeostasis and viability. Nature 545, 93-97, doi:10.1038/nature22082 (2017).
    89 Assali, E. A. et al. NCLX prevents cell death during adrenergic activation of the brown
    adipose tissue. Nat Commun 11, 3347, doi:10.1038/s41467-020-16572-3 (2020).
    90 Marotta, L. L. et al. The JAK2/STAT3 signaling pathway is required for growth of
    CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors. The Journal of clinical
    investigation 121, 2723-2735, doi:10.1172/jci44745 (2011).
    91 Chen, S. H. & Chang, J. Y. New Insights into Mechanisms of Cisplatin Resistance: From
    Tumor Cell to Microenvironment. Int J Mol Sci 20, doi:10.3390/ijms20174136 (2019).
    92 Kerkhofs, M. et al. Emerging molecular mechanisms in chemotherapy: Ca(2+) signaling at
    the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 9, 334,
    doi:10.1038/s41419-017-0179-0 (2018).
    61
    93 Tomar, D. et al. Blockade of MCU-Mediated Ca(2+) Uptake Perturbs Lipid Metabolism via
    PP4-Dependent AMPK Dephosphorylation. Cell reports 26, 3709-3725 e3707,
    doi:10.1016/j.celrep.2019.02.107 (2019).
    94 Kwong, J. Q. et al. The mitochondrial calcium uniporter underlies metabolic fuel preference
    in skeletal muscle. JCI Insight 3, doi:10.1172/jci.insight.121689 (2018).
    95 Zhang, P., Konja, D., Zhang, Y. & Wang, Y. Communications between Mitochondria and
    Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells 10,
    doi:10.3390/cells10092195 (2021).
    96 Lee, J. et al. Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP -
    binding and -hydrolysis via CDDO and its derivatives. J Biol Chem, 101719,
    doi:10.1016/j.jbc.2022.101719 (2022).
    97 Tangeda, V. et al. Lon upregulation contributes to cisplatin resistance by triggering NCLXmediated mitochondrial Ca(2+) release in cancer cells. Cell Death Dis 13, 241,
    doi:10.1038/s41419-022-04668-1 (2022).

    QR CODE
    :::