跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓世淇
Shi-Qi Zhuo
論文名稱: 實驗室內之Clegg衝擊錘與間接張力試驗關聯性研究-以冷拌再生發泡瀝青混凝土
The study of Relationship between Clegg Impact Hammer and Indirect Tensile Strength in laboratory – taking Cold Recycled Foam Asphalt Concrete as a sample
指導教授: 陳世晃
Shih-Huang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 冷拌再生發泡瀝青混凝土Clegg衝擊錘間接張力強度
外文關鍵詞: Cold-mix foamed asphalt concrete, Clegg impact hammer, indirect tensile strength
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 冷拌再生發泡瀝青混凝土有齡期強度發展趨勢且受水分蒸發影響,而國內施工綱要第02727章冷拌再生瀝青混凝土規定現地驗收以Clegg衝擊錘進行,冷拌發泡瀝青混凝土Cleeg衝擊錘CIV值與間接張力強度之關係尚未建立。本研究目的為探討冷拌再生發泡瀝青混凝土CIV值與間接張力之關聯性,首先會蒐集台灣氣候資料作為儲存環境模擬依據,並根據各國施工規範決定實驗室斷面配置,並於不同養治時間測量間接張力強度、含水量及CIV值。試驗結果顯示含水量與間接張力呈高度對數關係,斷面CIV值與間接張力呈高度指數關係,且實驗室與現地斷面有強度發展差異。綜合上述所敘,實驗室試體與現地斷面可能因含水量有強度發展之差異;;以CIV值預測冷拌發泡瀝青混凝土間接張力強度是可行的且Clegg衝擊錘適合用於現地品質控制;本研究之實驗室強度展可依CIV值50分為前期與後期,前期冷拌發泡瀝青混凝土性質類似水泥土壤,後期冷拌發泡瀝青混凝土開始有瀝青混凝土性質,整體來說Clegg衝擊錘可立即測量鋪面強度故可進一步使用及研究。


    The strength of cold-mix foamed asphalt concrete was increasing by time and it is influenced by the moisture evaporation. The Clegg impact hammer is adopted to control the field quality of cold-mix foamed asphalt concrete by Construction and Planning Agency, Ministry of The Interior in Taiwan. there are a few studies of the relationship between the CIV of Clegg impact hammer and the indirect tensile strength. The objective of this study is to explore the relationship between CIV and indirect tensile strength of Cold-mix foamed asphalt concrete. Storage conditions are referenced the weather condition of Taiwan, and the section design is based on the construction specification. The CIV, the indirect tensile strength, and water content were measured at various curing time. Based on the results, there was high positive logarithmic correlative between water content and indirect tensile strength. There was high positive exponential correlative between indirect tensile strength and CIV of section, and the development of the lab. and field section strength was different. Based on above, the strength development different could be the water content of lab. specimen and field section. It is feasible to adopt CIV to predict indirect tensile strength of Cold-mix foamed asphalt concrete and Clegg impact hammer is the good quality control in filed. The strength development of lab. section also was separated into early period and late period by CIV 50 in this study. At the early period, the behavior of cold-mix foamed asphalt concrete was similar to cement treated soil. At the late period, the cold-mix foamed asphalt concrete property was closed to asphalt concrete behavior. Both of the early and late period, the Clegg impact hammer is the immediately equipment to evaluate the pavement strength, it worthy of further studying and application.

    摘要 I ABSTRACT II 目錄 V 圖目錄 VIII 表目錄 XII 第一章、緒論 1 1-1研究背景 1 1-2研究動機 2 1-3研究目的 3 1-4研究流程 4 第二章、文獻回顧 6 2-1冷拌再生發泡瀝青混凝土介紹 6 2-1-1冷拌再生穩定處理 7 2-1-2冷拌再生工法類型 11 2-1-3發泡瀝青性質探討 14 2-1-4冷拌再生瀝青混凝土性質探討 18 2-1-5冷拌再生瀝青混凝土應用案例 23 2-1-6冷拌再生瀝青混凝土施工規範及建議 27 2-2冷拌再生瀝青混凝土齡期強度發展 28 2-3材料水分散失探討 30 2-4CLEGG衝擊錘介紹 34 2-5文獻回顧小結 39 第三章、研究方法 40 3-1研究流程與試驗配置 40 3-2材料基本性質試驗 44 3-2-1粒料基本性質試驗 44 3-2-2瀝青基本性質試驗 48 3-3冷拌再生發泡瀝青混凝土配合設計 51 3-3-1冷拌再生發泡瀝青混凝土配合設計流程 51 3-3-2冷拌再生發泡瀝青混凝土配合設計試驗項目 53 3-4冷拌再生發泡瀝青混凝土齡期強度發展 58 3-4-1氣候環境資料蒐集 58 3-4-2試驗斷面設計 59 3-4-3試體製作及養治 60 3-4-4相關試驗 62 第四章、配合設計結果 64 4-1材料基本性質試驗結果 64 4-1-1粒料基本性質試驗結果 64 4-1-2瀝青基本性質試驗結果 66 4-1-3材料基本性質試驗結果小結 66 4-2冷拌再生發泡瀝青混凝土配合設計設計結果 67 4-2-1冷拌再生發泡瀝青混凝土粒料級配設計結果 67 4-2-2瀝青發泡性質試驗結果 69 4-2-3冷拌再生發泡瀝青混凝土配合設計試驗結果 69 4-2-4冷拌再生發泡瀝青混凝土最適配比決定 71 第五章、齡期強度發展試驗結果 72 5-1材料強度發展與水分蒸發試驗結果 73 5-1-1間接張力強度發展試驗結果 73 5-1-2水分蒸發後含水量試驗結果 74 5-1-3相關性探討 75 5-1-4材料強度發展與水分蒸發小結 75 5-2斷面各層水分蒸發試驗結果 76 5-2-1斷面各層含水量試驗結果 76 5-2-2斷面各層平均含水量試驗結果 79 5-2-3斷面各層水分蒸發小結 80 5-3斷面強度發展試驗結果 81 5-3-1Clegg衝擊錘試驗結果 81 5-3-2斷面各層含水量轉換間接張力結果 82 5-3-3相關性探討 83 5-3-4斷面強度發展小節 85 第六章、結論與建議 86 6-1結論 86 6-2建議 88 參考文獻 89

    內政部營建署,(2021),第02727章,「冷拌再生瀝青混凝土」。
    內政部營建署,(2022),「市區道路及附屬工程設計規範」。
    杜嘉崇、蕭炎泉、李東林,(2005),「乳化瀝青常溫拌合特性之研究」,臺灣公路工程,第三十一卷,第十二期,第18-25 頁。
    王伯偉,(2005),「土壤水泥之抗剪強度及承載力—低塑性黏土」,中華大學土木工程學系碩士論文,新竹。
    施盛耀,(2010),「冷拌多孔性瀝青混凝土之工程性質」,國立成功大學土木工程學系碩士論文,臺南。
    徐聖博,(2015),「發泡瀝青技術添加瀝青刨除料應用於道路底層可行性之研究」,國立中央大學土木工程學系碩士論文,桃園。
    曾偉原,(2016),「冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究」,國立中央大學土木工程學系碩士論文,桃園。
    游景年,(2017),「冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證」,國立中央大學土木工程學系碩士論文,桃園。
    簡啓倫,(2019),「冷拌再生乳化瀝青混凝土應用於鋪面底層之可行性評估」,國立中央大學土木工程學系碩士論文,桃園。
    陳思儒,(2020),「使用發泡瀝青之冷拌再生瀝青混凝土強度發展初步探討」,國立中央大學土木工程學系碩士論文,桃園。
    林太祈,(2021),「探討冷拌再生乳化瀝青混凝土於拌和完後儲存條件對於成效影響」,國立中央大學土木工程學系碩士論文,桃園。
    Al-Amoudi, O. S. B., Asi, I. M., Wahhab, A., & Khan, Z. A. (2002). “Clegg Hammer—California-Bearing Ratio Correlations.” Journal of Materials in Civil Engineering, Vol. 14, No.6, pp.512-523.
    ASTM D5874. (2016). “Standard Test Methods for Determination of the Impact Value (IV) of a Soil.”.
    AASHTO PP 94. (2018). “Standard specification for determination of optimum asphalt content of cold recycled mixture with foamed asphalt.” Group 3
    AASHTO MP 38. (2018). “Standard specification for mix design of cold recycled mixture with foamed asphalt.” Group 3.
    Clegg, B. (1976) “An Impact Testing Device for In-Situ Base Course Evaluation,” Assassination Records Review Board Proceedings, Vol. 8, pp.1-6
    Fu, P., Jones, D., and Harvey, J. (2010). “Micromechanics of the Effects of Mixing Moisture on Foamed Asphalt Mix Properties.” Journal of Materials in CIvil Engineering, 20(10), 985-995.
    Guthrie, W. S., Reese, G. B. (2008). “Assessing Rutting Susceptibility of Cement-Treated Base Material under Early Trafficking with Heavy Clegg Impact Soil Tester.” Journal of the Transportation Research Board, 2059(1), pp.72–79.
    Hailesilassie. B. W., Schuetz, P., Jerjen, I., Hugener, M., & Partl M. N. (2015). “Dynamic X-ray radiography for the determination of foamed bitumen bubble area distribution.” Journal of Materials Science, pp.79-92.
    Iwański, M., Chomicz-Kowalska, A. (2013). “Laboratory study on mechanical parameters of foamed bitumen mixtures in the cold recycling technology.” Procedia Engineering, 57, pp.433-442.
    Kuna, K., Airey G., & Thom N. (2014). “Laboratory mix design procedure for foamed bitumen mixtures.” Journal of the Transportation. Research Board, 2444, pp.1-10.
    Lin, J., Wei, T., Hong, J., Zhao, Y., & Liu, J. (2015). “Research on development mechanism of early-stage strength for cold recycled asphalt mixture using emulsion asphalt.” Construction and Building Materials, 99, pp. 137-142
    Li, Z., Hao, P., Liu, H., Xu, J., & Chen, Z. (2016). “Investigation of early-stage strength for cold recycled asphalt mixture using foamed asphalt.” Construction and Building Materials, 127, 410–417.
    Maryland Department of Transportation State Highway Administration. (2021). “Standard specifications for construction and material.”.
    Prowell, B.D., G.C. Hurley, and B. Frank, (2007). ”Warm-mix asphalt: Best practices” National Asphal Pavement Association.
    Peter Lehmann, Shmuel Assouline, and Dani Or (2008). “Characteristic lengths affecting evaporative drying of porous media.” Physical Review E, 77(5), 056309.
    Tahseen Saadoon, Alvaro Garcia, and Breixo Gómez-Meijide (2017). “Dynamics of water evaporation in cold asphalt mixtures.” Materials & Design, 134, 196-206.
    U.S. Department of Transportation, Federal Highway Administration. (2014). “Standard specifications for construction of roads and bridges on federal highway projects.”.
    Wirtgen GmbH. (2010). “Wirtgen Cold Recycling Manual.” 3th Edition, ISBN3-936215-05-7, Windhagen, Germany.
    Xu, C. Y., & Singh, V. P. (2002). “Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland.” Water Resources Management, 16(3), 197-219.
    Xiao, F., Yao, S., Wang, J., Li, X., & Amirkhanian, S. (2018). “A literature review on cold recycling technology of asphalt pavement.” Construction and Building Materials, 180, 579–604.
    Young, Tyler B., (2007). "Early Age Assessment of Cement Treated Materials" Theses and Dissertations, 885.

    QR CODE
    :::