| 研究生: |
廖聰魁 Tsung-Kuei Liao |
|---|---|
| 論文名稱: |
單輸入單輸出T-S模糊系統的控制器與估測器設計演算法 The algorithm of designing controllers and observers for SISO T-S fuzzy systems |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung 張文哲 Wen-Jer Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 模糊控制 、Takagi-Sugeno 模糊模型 、控制典型式 、估測典型式 、李亞普諾夫漸近穩定理論 |
| 外文關鍵詞: | fuzzy control, Takagi-Sugeno fuzzy model, controllable canonical form, observable canonical form, Lyapunov asymptotic stability theorem |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中針對Takagi-Sugeno (T-S) 模糊模型[1]的系統架構提出了控制器以及估測器的設計方式,並對系統中考慮收斂速度影響時作探討與設計。在控制器部分,我們利用平行分配補償(Parallel Distributed Compensation; PDC)[2]的設計觀念對以T-S 模糊模型描述的非線性受控體作控制器設計,在每一個子系統屬於可控標準式時,我們引用李亞普諾夫(Lyapunov)漸近穩定理論並以李亞普諾夫等式取代李亞普諾夫不等式後,我們可直接獲得李亞普諾夫方程式的解,透過此解便可進一步求到最終的控制器對受控體做控制並達到系統穩定的要求。對於估測器的部分,針對T-S 模糊模型描述的非線性受控體,當每一個子系統的狀態矩陣用可估測標準式描述時,我們同樣利用李亞普諾夫漸近穩定理論分析估測誤差與系統輸出的收斂情形,推導並求解李亞普諾夫方程式後,我們能夠直接設計此系統的狀態估測器。除此之外,本論文尚且針對T-S模糊系統在考慮系統輸出收斂速度的要求下,進行控制器的設計與解決,並使系統輸出的響應收斂情形有大幅度的改善。
In the past, LMI(Linear Matrix Inequalities) technique is used to solve the fuzzy controller, observer and to analyze the stability of Lyapunov inequalities of the T-S (Takagi-Sugeno) fuzzy systems. However, there are still many difficulties in systematically designing the T-S fuzzy controller and the observer. In this thesis, we provide a fuzzy controller and observer design method for the nonlinear plant whose structure is represented by T-S fuzzy model. The model-based fuzzy controller and observer are designed by the concept of the so-called “PDC (Parallel Distributed Compensation)” [2]. Applying the Lyapunov asymptotic stability theorem instead of Lyapunov inequality, we can solve the Lyapunov equation via the algorithm provided in this work. The final stable controller and observer of the nonlinear plant can be obtained directly. This method is mainly based on the fact that each subsystem of T-S fuzzy model can be represented by the controllable and the observable canonical form. Besides, the decay rate of system state can also be improved.
[1]T. Takagi and M. Sugeno, “Fuzzy Identification of System and Its
Applications to Modeling and Control”, IEEE Transactions on
Systems,Man, and Cybernetics, Vol. SMC-15, No. 1, pp. 116-132, 1985.
[2]H. O. Wang, K. Tanaka and M. F. Griffin, “An Approach to Fuzzy Control
of Nonlinear Systems: Stability and Design Issues”, IEEE Transactions
on Fuzzy Systems, Vol. 4, No. 1, pp. 14-23, 1996.
[3]C. S. Chen and W. L. Chen, “Analysis and Design of a Stable Fuzzy
Control System”, Fuzzy Sets and Systems, Vol. 96, No. 1, pp. 21-35,
1998.
[4]J. Park, J. Kim and D. Park, “LMI-Based Design of Stabilizing Fuzzy
Controller for Nonlinear Systems Described by Takagi-Sugeno Fuzzy Model”,
Fuzzy Sets and Systems, Vol. 122, No. 1, pp. 73-82, 2001.
[5]J. Yoneyama, M. Nishikawa, H. Katayama and A. Ichikawa, “ Control for
T-S Fuzzy Descriptor System”, Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 28-33, 1999.
[6]K. Tanaka, T. Ikeda and H. O. Wang, “An Approach to Stabilization of
Uncertain Fuzzy Systems”, Proceedings of the IEEE International Conference
on Fuzzy Systems, Vol. 1, pp. 72-77, 1996.
[7]K. Tanaka, T. Taniguchi and H. O. Wang, “Model-Based Fuzzy Control of
TORA System: Fuzzy Regulator and Fuzzy Observer Design via LMIs that
Represent Decay Rate, Disturbance Rejection, Robustness, Optimality”,
Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1,
pp. 313-318, 1998.
[8]K. Tanaka, T. Taniguchi and H. O. Wang, “Generalized T-S Fuzzy System:
Rule Reduction and Robust Control”, Proceedings of the IEEE International
Conference on Fuzzy Systems, Vol. 2, pp. 688-693, 2000.
[9]T. Taniguchi, K. Tanaka, K. Yamafuji and H. O. Wong, “Nonlinear Model
Following Control via T-S Fuzzy Model”, Proceedings of the American Control
Conference, Vol. 3, pp. 1837-1841, 1999.
[10]T. Taniguchi, “Modeling and Model Reduction Using Generalized Form of T-S
Fuzzy System”, Proceedings of the American Control Conference, Vol. 4, pp.
2854-2858, 2000.
[11]T. Taniguchi, K. Tanaka and H. O. Wang, “Fuzzy Descriptor Systems and
Nonlinear Model Following Control”, IEEE Transactions on Fuzzy Systems,
Vol. 8, No. 4, pp. 442-452, 2000.
[12]W. J. Chang and C. C. Sun, “Fuzzy Controller Design for Nonlinear TORA
Systems”, International Journal of Fuzzy Systems, Vol. 2, No. 1, pp. 60-66,
2000.
[13]W. J. Chang, C. C. Sun and C. C. Fuh, “Applications of Continuous TS-Type
Fuzzy Control with Common Controllability Gramian Assignment”, Proceedings
of the International Conference on Automation Technology, Vol. 1, pp. 569-
574, Taipei, Taiwan, May 9-11, 2000.
[14]W. J. Chang, “Model-Based Fuzzy Controller Design with Common
Observability Gramian Assignment”, ASME, J. Dynamic Systems, Measurement
and Control, Vol. 123, No. 1, pp. 113-116, 2001.
[15]J. Joh, R. Langari, E. T. Jeung and W. J. Chung, “A New Design Method for
Continuous Takagi-Sugeno Fuzzy Controller with Pole Placements: An LMI
Approach”, Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, Vol. 3, pp. 2969-2974, 1997.
[16]J. Joh, Y. H. Chen and R. Langari, ”On the Stability Issues of Linear
Takagi-Sugeno Fuzzy Models”, IEEE Transactions on Fuzzy System, Vol. 6, No.
3, pp. 402-410, 1998.
[17]J. M. Zhang, R. H. Li and P. A. Zhang, “Stability Analysis and Systematic
Design of Fuzzy Control System”, Fuzzy Sets and Systems, Vol. 120, No. 1,
pp. 65-72, 2001.
[18]K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control
Systems”, Fuzzy Sets and Systems, Vol. 45, No. 2, pp. 135-156, 1992.
[19]K. Tanaka, T. Ikeda and H. O. Wang “Design of Fuzzy Control Systems Based
on Relaxed LMI Stability Conditions”, Proceedings of the Decision and
Control, Vol. 1, pp. 598 -603, 1997.
[20]K. Tanaka, T. Ikeda and H. O. Wang, “Fuzzy Control System Design via
LMIs”, Proceedings of the American Control Conference, Vol. 5, pp. 2873-
2877, 1997.
[21]M. A. L. Thathachar and P. Viswanath, “On the Stability of Fuzzy
Systems”, IEEE Transactions on Fuzzy Systems, Vol. 5, No. 1, pp. 145-151,
1997.
[22]J. Li, D. Niemann, H. O. Wong and K. Tanaka, “Parallel Distributed
Compensation for T-S Fuzzy Models Multiobjective Controller Design”,
Proceedings of the American Control Conference, Vol. 3, pp. 1832-1836, 1999.
[23]K. Tanaka, T. Ikeda and H. O. Wang “An LMI Approach to Fuzzy Controller
Designs Based on Relaxed Stability Conditions”, Proceedings of the IEEE
International Conference on Fuzzy Systems, Vol. 1, pp. 171 -176, 1997.
[24]K. Tanaka, T. Ikeda and H. O. Wang, “A Unified Approach to Controlling
Chaos via an LMI-Based Fuzzy Control System Design”, IEEE Transactions on
Circuits and Systems, Vol. 45, No. 10, pp. 1021-1040, 1998.
[25]W. Chang, Y. H. Joo, J. B. Park and G. Chen, “Robust Fuzzy-Model-Based
Controller for Uncertain Systems”, Proceedings of the IEEE International
Conference on Fuzzy Systems, Vol. 1, pp. 486-491, 1999.
[26]W. J. Chang, C. C. Sun and C. C. Fuh, “Discrete Output Fuzzy Controller
Design for Achieving Common Controllability Gramian”, Asian Journal of
Control, Vol. 2, No. 4, pp. 284-289, 2000.
[27]K. Tanaka and M. SANO, “On the Concepts of Regulator and Observer of Fuzzy
Control Systems”, Proceedings of the IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 767 -772, Taipei, Taiwan, May 9-11, 1994.
[28]K. Tanaka and H. O. Wang, “Fuzzy Regulators and Fuzzy Observers: A Linear
Matrix Inequality Approach”, Proceedings of the Decision and Control, Vol.
2, pp. 1315-1320, 1997.
[29]H. O. Wang and K. Tanaka, “An LMI-Based Stable Fuzzy Control of Nonlinear
Systems and Its Application to Control of Chaos”, Proceedings of the IEEE
International Conference on Fuzzy Systems, Vol. 2, pp. 1433-1438, 1996.
[30]K. Tanaka, T. Ikeda and H. O. Wang, “Fuzzy Regulators and Fuzzy Observers:
Relaxed Stability Conditions and LMI-Based Design”, IEEE Transactions on
Fuzzy Systems, Vol. 6, No. 2, pp. 250-265, 1998.
[31]K. Tanaka, T. Ikeda and H. O. Wang, “Robust Stabilization of a Class of
Uncertain Nonlinear System via Fuzzy Control: Quadratic Stabilizability,
Control Theory, and Linear Matrix Inequalities”, IEEE Transactions on Fuzzy
Systems, Vol. 4, No. 1, pp. 1-13, 1996.
[32]S. Boyd et al., Linear Matrix Inequalities in Systems and Control Theory,
Philadelphia, PA: SIAM, 1994.
[33]W. J. Chang and C. C. Sun, “Fuzzy Control with Common Observability
Gramian Assignment for Continuous Takagi-Sugeno Models”, Proceedings of the
American Control Conference, Vol. 2, pp. 1366-1370, 1999.
[34]W. J. Chang, “Common Observability Gramian Assignment Using Discrete Fuzzy
Control”, Proceedings of the IEEE International Conference on Fuzzy
Systems, Vol. 1, pp. 84-89, 1999.
[35]W. J. Chang, C. C. Sun and C. C. Fuh, “Continuous Output Feedback Fuzzy
Controller Design with a Specified Common Controllability Gramian”,
International Journal of Fuzzy Systems, Vol. 3, No. 1, pp. 356-363, 2001.
[36]J. Zhao, V. Wertz and R. Gorez, “Fuzzy Gain Scheduling Controllers Based
on Fuzzy Models”, Proceedings of the IEEE International Conference on Fuzzy
Systems, Vol. 3, pp. 1670-1676, 1996.
[37]P. Spångéus, “A Negative Result on Piecewise Quadratic Lyapunov Functions
for Decay Rate Analysis”, Proceedings of the Decision and Control, Vol. 3,
pp. 2312-2313, 1999.
[38]P. A. Cook, Nonlinear Dynamical Systems, Prentice-Hall, New York, 1994.
[39]C. S. Xiao, Z. M. Feng and X. M. Shan, “On the Solution of the Continuous-
Time Lyapunov Matrix Equation in Two Canonical Forms”, Proceedings of the
IEE Control Theory and Applications, Vol. 139, No. 3, pp. 286-290, 1992.
[40]H. O. Wang, K. Tanaka and M. Griffin, “Parallel Distributed Compensation
of Nonlinear Systems by Takagi-Sugeno’s Fuzzy Model,” Proceedings of the
IEEE International Conference on Fuzzy Systems, Vol. 2, pp.531-538, 1995.
[41]H. O. Wang, J. Li, D. Niemann and K. Tanaka “T-S Fuzzy Model with Linear
Rule Consequence and PDC Controller: A Universal Framework for Nonlinear
Control Systems”, Proceedings of the Decision and Control, Vol. 1, pp. 549 -
554, 2000.
[42]X. Yu, Z. Man and B. Wu, “Design of Fuzzy Sliding-Mode Control Systems”,
Fuzzy Sets and Systems, Vol. 95, No. 3, pp. 295-306, 1998.
[43]W. J. Rugh, Linear System Theory. Prentice-Hall, New Jersey, 1996.
[44]K. N. Hong, J. D. Park and T. Y. Kuc, “Pole Assignment and Tracking of
Uncertain Linear Systems with State/Output Feedback: A Model Reference
Adaptive Control Approach”, Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 1120-1125, 1996.
[45]W. J. Chang, “Dynamic Multi-Constrained Output Feedback Controller Design
for Linear Discrete Systems”, Journal of the Chinese Institute of
Engineers, Vol. 21, No. 5, pp. 563-573, 1998.
[46]W. J. Chang, C. C. Fuh and C. C. Sun, “A New Method of Designing Discrete
Output Feedback Fuzzy Controllers”, Proceedings of 2000 Automatic Control
Conference, R. O. C., p. 816, 2000.