跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏黨忠
Kieu Dang Trung
論文名稱: 基於氮化銦鎵表面增強拉曼散射的 DNA檢測
DNA Detection by InGaN-based Surface Enhanced Raman Scattering
指導教授: 賴昆佑
Lai, Kun-Yu
簡汎清
Chien, Fang-Ching
Le Vu Tuan Hung
Le Vu Tuan Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 表面增強拉曼散射氮化銦鎵DNA電荷轉移共振局部表面電漿共振
外文關鍵詞: Surface enhanced Raman scattering, InGaN, DNA, Ag, Charge transfer resonance, Localized surface Plasmon scattering
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(surface enhanced Raman scattering, SERS)可大幅提升分子的光訊號強度,已逐漸成為分子診斷的有效工具。在本研究中,我們以塗有銀 (Ag) 奈米顆粒的氮化銦鎵(InGaN)量子井,作為新型的SERS基板,並以此檢測DNA。透過優化Ag奈米粒子的尺寸和密度,我們以局部表面電漿共振 (localized surface plasmon resonance, LSPR) 和電荷轉移共振 (charge transfer resonance, CTR) 的效應來增強DNA的SERS訊號。本研究所提出的InGaN SERS基板,可檢測濃度低至10-6 M的19-mers DNA。


    Surface enhanced Raman scattering has gradually become an effective tool for molecular diagnosis in light of the significant intensity magnification. In this project, InGaN (QWs), coated with silver (Ag) nanoparticles are utilized as new SERS substrate for DNA detection. Optimizing the size and density of silver (Ag) nanoparticles and the roughness of the substrate, we aim to maximize the SERS signal via localized surface plasmon resonance (LSPR) and charge transfer resonance (CTR) involving the collective oscillation of electrons at the Ag surface.
    Electrons trapped within the QWs serve as new source to supply the resonance charges for LSPR and CTR process, contributing to the enhancement factor of SERS. With optimizing the size and density of Ag nanoparticles, we are able to detect the 19-mers DNA with molar concentration down to 10-6 M.

    CHINESE ABSTRACT i ENGLISH ABSTRACT ii ADKNOWLEDMENT iii TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES viii EXPLANATION OF ABBREVIATIONS ix Chapter 1 1 INTRODUCTION 1 1.1. Theory of surface enhanced Raman scattering (SERS) 1 1.1.1. The principle: localized surface plasmon resonance & charge transfer resonance 1 1.1.2. The nanoparticles and substrates for SERS 3 1.1.3. The advantages of nitride quantum wells 7 1.2. Deoxyribonucleic Acid (DNA) 8 1.2.1. DNA structure 9 1.2.2. Immobilization of DNA on SERS substrate 10 1.3. DNA analysis using SERS 12 1.3.1. DNA detection using indirect SERS method 12 1.3.2. DNA detection using label-free SERS method 13 Chapter 2 14 EXPERIMENT 14 2.1. Sample preparation 14 2.1.1. The quantum well structure 14 2.1.2. Metal deposition 14 2.1.3. Annealing process 14 2.2. SERS Measurement 15 Chapter 3 17 RESULTS AND DISCUSSIONS 17 3.1. Optimizing the fabrication of SERS substrate 18 3.1.1. Metal thickness 21 3.1.2. Annealing condition 23 3.2. The effect of quantum wells 26 3.3. Limit of detection and enhancement factor 29 3.4. Stability and reproducibility 31 Chapter 4 34 CONCLUSIONS AND FUTURE WORKS 34 4.1. Conclusions 34 4.2. Future works 34 REFERENCE 35

    1. Fong, K. E. and Yung, L. Y. L. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 5, 12043– 12071. (2013).
    2. Kahraman, M., et al. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics, 6(5), 831–852 (2017)
    3. Katherine A. W. and Van Duyne R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem, 58, 267–297 (2007).
    4. Hutter, E., Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv.Mate, 16, 19, 1685-1706 (2004).
    5. Dieringer, J. A., et al. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss., 132, 9–26 (2006).
    6. Bonyár, A., et al. Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications nanoislands for LSPR and SERS applications. Sensors and Actuators B: Chemical., 255, 433–439 (2018).
    7. Garcia-Rico, E., et al. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acid: From fundamental studies to real-life applications. Chem. Soc. Rev., 47, 4909 (2018).
    8. Lombardi, J. R. and Birke, R. L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C, 118, 20, 11120-11130 (2014).
    9. Le Ru, E. C., Etchegoin, P. G. Principles of Surface Enhanced Raman Spectroscopy (and Related Plasmonic Effects). Elsevier, Amsterdam, The Netherlands, (2009).
    10. McPeak, K. M., et al. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics, 2, 3, 326-333 (2015).
    11. Okamoto, K., et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater 3, 601–605 (2004).
    12. Arenas, J. J., et al. The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering. J. Chem. Phys. 116, 16 (2002).
    13. Pray, L. Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 (2008).
    14. Blackburn, G. M., et al. Nucleic Acids in Chemistry and Biology: Third edition, Chapter 2. The Royal Society of Chemistry, Cambridge, UK (2006).
    15. Watson, J. D., and Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
    16. Sinden, R. R. DNA Structure and Function. Academic press, 1 Edition, San Diego, USA (1994).
    17. Sobek, J., et al. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays. BMC Biophysics, 6, 8 (2013).
    18. Nimse, S. B., et al. Immobilization techniques for microarray: challenges and applications. Sensors 14, 22208–22229 (2014).
    19. Rashid, J. I. A. and Yusof, N. A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sensing Res., 16, 19–31, (2017).
    20. Tian, S., et al. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett., 17, 8, 5071-5077 (2017).
    21. Zong, C., et al. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev., 118, 4946−4980 (2018).
    22. Fleischmann, M., et al. Raman spectra of pyridine adsorbed at a silver electrode. J. Chem. Phys. Lett., 26, 163. (1974).
    23. Pilot, R., et al. A Review on Surface-Enhanced Raman Scattering. Biosensors, 9, 57 (2019).
    24. Xu, L. J., et al. Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. J. Am. Chem. Soc. 137, 5149−5154 (2015).
    25. Wang, Y. K., et al. Direct detection of DNA using 3D surface enhanced Raman scattering hotspot matrix. Electrophoresis, 40, 16-17, 2104–2111 (2019).
    26. Hung, C. L., et al. Lable-free Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosensors and Bioelectronics, 26, 5, 2413-2418 (2011).
    27. Alvarez, J. R., et al. DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases. Front. Genet., 6,213 (2015).
    28. Sonika, C., et al. Spectroscopic and molecular docking studies on chlorambucil interaction with DNA. International Journal of Biological Macromolecules, 51, 4, 406-411 (2012).
    29. Garcia-Vidal F. J., and Pendry, J. B. Collective Theory for Surface Enhanced Raman Scattering. Physical Review Letter. 77,1163 (1996).
    30. Sui, M., et al. Investigation on the morphology and optical properties of self-assembled Ag Nanostructures on c-plane GaN by the control of annealing temperature and duration. Nano-structures and Nano-Objects, 15, 28-39 (2018).
    31. Papadakis, V. M. and Kenanakis, G. Reusable surface-enhanced Raman substrates using microwave annealing. Applied Physics A, 124, 869 (2018).
    32. Le Ru, E. C., et al. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 111, 13794-13803 (2007).

    QR CODE
    :::