跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾品碩
Pin-Shuo Tseng
論文名稱: 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析
Biomechanical analysis of conventional and anatomical calcaneal plates for fixing Sanders type II-B calcaneal fractures
指導教授: 鍾禎元
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 解剖型骨板跟骨骨折有限元素法
外文關鍵詞: anatomical calcaneal plate, calcaneal fracture, finite element method
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於開放式復位跟骨關節內骨折固定術而言,確保手術後的穩定性是十分必要的。目前在實施關節內固定手術時提供患者選擇的骨板有新型解剖型Aplus骨板以及傳統Y型骨板兩款。本研究目的是探討兩款骨板在Sanders type II-B型骨折型態下承受負載之力學與生物力學行為,探究兩骨板能否提供足夠穩定性、比較兩者對骨折跟骨造成的應力遮蔽效應程度並對固定骨板之骨釘數量與位置對結構穩定性之影響進行探討。本研究使用COMSOL Multiphysics有限元素分析軟體建立兩種骨板在Sanders type II-B型跟骨骨折下之有限元素模型。結果顯示,Aplus骨板固定之跟骨模型,擁有相對優秀的穩定性以及較小的應力屏蔽效應。


    For open reduction internal fixation of intra-articular calcaneal fractures, initial stability is essential. Currently there are two type of calcaneal plate can be chosen for calcaneal fixation, new type anatomical calcaneal plate Aplus and conventional Y plate. The objective of this study is to investigate the mechanical and biomechanical behavior of the two bone plates subjected to load in the Sanders type II-B calcaneal fracture, and to explore whether the two bone plates can provide sufficient stability. Also, compare the stress shielding effect cause by the plate and discuss the influence of the number and position of bone screws to the stability. This study used COMSOL Multiphysics finite analysis software to establish two finite element models for two kind of calcaneal plate under the Sanders type II-B calcaneal fracture. Analysis results indicate that Aplus calcaneal plate model has relatively great stiffness and causing small stress shielding effect.

    摘要 i Abstract iii 致謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 跟骨的解剖學構造 3 1.4 跟骨骨折分類 7 1.5 骨折癒合 11 1.6 應力遮蔽效應 13 1.7 文獻回顧 14 第二章 有限元素分析 18 2.1 數學方程式 18 2.2 有限元素建模 19 2.2.1 跟骨模型建立 19 2.2.2 骨板模型建立 20 2.2.3 骨釘模型建立 22 2.2.4 術後骨折跟骨三維有限元素模型建立 24 2.3 有限元素模型材料性質 26 2.4 負載與邊界條件設定 27 2.5 網格與收斂性分析 30 2.6 後處理探討參數 31 第三章 結果與討論 32 3.1 等效應力(VON MISES STRESS) 33 3.1.1 骨板應力 33 3.1.2 骨釘應力 36 3.2 垂直方向位移 36 3.3 骨釘數量的影響 40 第四章 結論 45 第五章 未來展望 46 第六章 參考文獻 47 附錄A 民國108年中國機械工程研討會摘要

    [1] T. Illert, S. Rammelt, T. Drewes, R. Grass, and H. Zwipp, "Stability of locking and non-locking plates in an osteoporotic calcaneal fracture model," Foot & ankle international, vol. 32, no. 3, pp. 307-313, 2011.
    [2] R. Buckley and R. Meek, "Comparison of open versus closed reduction of intra-articular calcaneal fractures: a matched cohort in workmen," in Major Fractures of the Pilon, the Talus, and the Calcaneus: Springer, 1993, pp. 195-205.
    [3] S. K. Benirschke and B. J. Sangeorzan, "Extensive intraarticular fractures of the foot. Surgical management of calcaneal fractures," Clinical orthopaedics and related research, no. 292, pp. 128-134, 1993.
    [4] D. Eastwood, V. Langkamer, and R. Atkins, "Intra-articular fractures of the calcaneum. Part II: open reduction and internal fixation by the extended lateral transcalcaneal approach," The Journal of bone and joint surgery. British volume, vol. 75, no. 2, pp. 189-195, 1993.
    [5] P. Essex‐Lopresti, "The mechanism, reduction technique, and results in fractures of the os calcis," British Journal of Surgery, vol. 39, no. 157, pp. 395-419, 1952.
    [6] 麥麗敏、陳智傑、廖美華, 解剖生理學, 台灣: 華杏出版股份有限公司, 2015, p. 755. [Online]. Available.
    [7] https://reurl.cc/DLoqR.
    [8] https://reurl.cc/GRQMx.
    [9] https://reurl.cc/qjXdy.
    [10] https://reurl.cc/LL6oX.
    [11] H. M. Frost, "Wolffs Law and bone's structural adaptations to mechanical usage: an overview for clinicians.," The Angle Orthodontist, vol. 64, pp. 175- 188, 1994.
    [12] E. Waris, Y. T. Konttinen, N. Ashammakhi, R. Suuronen, and S. Santavirta, "Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing," Expert Review of Medical Devices, vol. 1, no. 2, pp. 229-240, 2004.
    [13] M. Ni, D. W.-C. Wong, J. Mei, W. Niu, and M. Zhang, "Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures," Science China Life Sciences, vol. 59, no. 9, pp. 958-964, 2016.
    [14] C. Piao, D. Wu, M. Luo, and H. Ma, "Stress shielding effects of two prosthetic groups after total hip joint simulation replacement," Journal of orthopaedic surgery and research, vol. 9, no. 1, p. 71, 2014.
    [15] M. Richter, P. Droste, T. Goesling, S. Zech, and C. Krettek, "Polyaxially-locked plate screws increase stability of fracture fixation in an experimental model of calcaneal fracture," The Journal of bone and joint surgery. British volume, vol. 88, no. 9, pp. 1257-1263, 2006.
    [16] M. H. Blake, J. R. Owen, T. S. Sanford, J. S. Wayne, and R. S. Adelaar, "Biomechanical evaluation of a locking and nonlocking reconstruction plate in an osteoporotic calcaneal fracture model," Foot & ankle international, vol. 32, no. 4, pp. 432-436, 2011.
    [17] Q.-J. Pang, X. Yu, and Z.-H. Guo, "The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: a finite element analysis," Pakistan journal of medical sciences, vol. 30, no. 5, p. 1099, 2014.
    [18] M. Ni, X.-H. Weng, J. Mei, and W.-X. Niu, "Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: a finite element analysis," Journal of Medical and Biological Engineering, vol. 35, no. 2, pp. 236-241, 2015.
    [19] B. Yu et al., "Biomechanical comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular calcaneal fractures–a finite element study," Computer methods in biomechanics and biomedical engineering, vol. 19, no. 13, pp. 1363-1370, 2016.
    [20] C.-H. Chen, Y.-H. Huang, C. Hung, C.-S. Chen, and C.-C. Chiang, "Finite Element Analysis of Tongue Type Calcaneal Fracture with Open Reduction and Internal Fixation with Locking Plate," Journal of Medical and Biological Engineering, vol. 38, no. 1, pp. 1-9, 2018.
    [21] C.-H. Chen, C. Hung, Y.-C. Hsu, C.-S. Chen, and C.-C. Chiang, "Biomechanical evaluation of reconstruction plates with locking, nonlocking, and hybrid screws configurations in calcaneal fracture: a finite element model study," Medical & biological engineering & computing, vol. 55, no. 10, pp. 1799-1807, 2017.
    [22] H. Ouyang et al., "Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis," Comput Methods Biomech Biomed Engin, vol. 20, no. 12, pp. 1339-1349, Sep 2017.
    [23] A. Hrennikoff, "Solution of Problems in Elasticity by the Frame Work Method," Journal od Appled Mechanics, vol. 8, no. 4, pp. 169-175, 1941.
    [24] D. McHenry, "A Lattice Analogy for the Solution of Plane Stress Problems," Journal of Institution of Civil Engineers, vol. 21, pp. 59-82, 1943.
    [25] COMSOL Structural Mechanics Module User's Guide. [Online]. Available.
    [26] https://reurl.cc/EMDnK.
    [27] B. Young, Wheater's fenctional histology : a text and colour atlas., sixth ed. 2006.
    [28] P. Kerr, M. Pape, M. Jackson, and R. Atkins, "Early experiences with the AO calcaneal fracture plate," Injury, vol. 27, no. 1, pp. 39-41, 1996.
    [29] "Locking calcaneal plates," ed.
    [30] L. Peng, J. Bai, X. Zeng, and Y. Zhou, "Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions," Medical engineering & physics, vol. 28, no. 3, pp. 227-233, 2006.
    [31] S. Benli, S. Aksoy, H. Havıtcıoğlu, and M. Kucuk, "Evaluation of bone plate with low-stiffness material in terms of stress distribution," Journal of Biomechanics, vol. 41, no. 15, pp. 3229-3235, 2008.
    [32] C.-L. Wang, C.-K. Cheng, C.-W. Chen, C.-M. Lu, Y.-S. Hang, and T.-K. Liu, "Contact areas and pressure distributions in the subtalar joint," Journal of biomechanics, vol. 28, no. 3, pp. 269-279, 1995.
    [33] 蕭德慶, "鎖定加壓骨板之有限元素分析與最佳化設計," 2017.
    [34] 余欣儒, "以有限元素分析探討不同的無柄人工髖關節設計及骨釘方位的生物力學影響," 碩士論文, 國立台北科技大學, 民國104.

    QR CODE
    :::