跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉明山
Ming-Shan Yeh
論文名稱: Ag含量與熱處理對A201合金應力腐蝕性之影響
Effect of Ag content and Heat Treatments on Stress Corrosion Cracking of A201 Alloys
指導教授: 李勝隆
Sheng-Long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 54
中文關鍵詞: 熱處理Ω相應力腐蝕性Ag含量A201合金
外文關鍵詞: A201 alloy, Ag content, heat treatment, stress corrosion cracking, Ω phase
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A201(Al-Cu-Mg-Ag合金)為一高強度鋁合金,隨著Ag含量的增加,強化機制由θ’相逐漸轉為Ω相,且當施行不同熱處理時,晶界析出形態也會跟著改變。
    應力腐蝕破裂是A201鋁合金破裂的原因之一,其破壞性會隨著析出形態而改變,故本研究之目的在探討Ag含量與熱處理對A201鋁合金應力腐蝕性之影響。
    實驗設計四種銀含量試片,分別為0wt.%Ag、0.3 wt.%Ag、0.6 wt.%Ag與0.9 wt.%Ag含量的Al-4.6Cu-0.3Mg合金,施以不同的時效熱處理(T4、T6、RRA、T7),探討在應力腐蝕環境下,各種時效熱處理條件對應力腐蝕敏感性的影響。並用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、微差掃描熱分析儀(DSC)、導電度(%IACS)、硬度試驗、拉伸試驗(Tensile Test)與慢應變速率試驗(SSRT)等方法,探討微結構的變化與材料機械性質和抗應力腐蝕敏感性之關係。
    由實驗結果可知,在人工時效熱處理後,合金成份含銀0.6 wt.%時即能有效促使Ω相大量析出,進而大幅提升材料的機械強度。且隨著銀含量的增加,雖然能使Ω析出相增加且分布較為細密,卻也造成晶界處陽極溶解效應越趨嚴重;而T7熱處理晶界析出物粗大,無析出帶較寬,也使得抗應力腐蝕效果較T6、RRA佳。


    A201(Al-Cu-Mg-Ag alloy)is a high strength aluminum alloy. With the increasing of Ag content,Ω phase will replace θ’ phase become the main strengthening phase. After different heat treatment, grain boundary precipitations will change.
    Stress corrosion cracking is one reason of A201 aluminum alloy happen to crack and the destructiveness will be different with the form of the precipitation. The effect of Ag content and heat treatment on stress corrosion cracking properties of A201 alloys were investigated.
    Using four different Ag content (0wt.%Ag、0.3wt.%Ag、0.6wt.%Ag and 0.9wt.%Ag) materials in the experiment. After different aging (T4、T6、RRA、T7), investigate the effect of heat treatment on the stress corrosion cracking of alloys, by using optical microscopy (OM), differential scanning calorimeter (DSC), electrical conductivity meter (%IACS), scanning electron microscopy (SEM), transmission electron microscopy (TEM). Analyzing the variation of microstructure of the alloys to compare with the variation of mechanical properties and stress corrosion cracking.
    Experimental results show that after artificial aging, alloy contains 0.6 wt.% Ag can promote Ω phase precipitate large, and improves the mechanical strength. With the increasing of Ag content, Ω phases precipitate more and finely, but anodic dissolution is serious at the grain boundaries. After T7 tempering, the grain boundary precipitations become coarse and the precipitate free zone becomes wide, then the stress corrosion cracking resistance is better than T6 and RRA tempering.

    摘要---------------------------------------------I 謝誌--------------------------------------------II 總目錄-----------------------------------------III 圖目錄-------------------------------------------V 表目錄------------------------------------------VI 一、前言-----------------------------------------1 1.1 A201合金簡介--------------------------------1 1.2 A201合金之熱處理與析出強化作用--------------2 1.3 Ag含量對A201合金析出強化相之影響------------3 1.4 應力腐蝕簡介--------------------------------4 1.5 A201合金之腐蝕形態--------------------------9 1.6 時效處理對抗應力腐蝕破裂之影響--------------9 二、實驗步驟與方法------------------------------12 2.1 合金配製及熱處理----------------------------12 2.2 微結構分析----------------------------------14 2.2.1 OM金相觀察-------------------------------14 2.2.2 掃瞄式電子顯微鏡(SEM)--------------------14 2.2.3 穿透式電子顯微鏡(TEM)--------------------14 2.2.4 微差掃瞄熱分析儀(DSC)--------------------14 2.2.5 導電度量測-------------------------------15 2.3 機械性質分析--------------------------------15 2.3.1 硬度試驗---------------------------------15 2.3.2 拉伸試驗---------------------------------15 三、結果與討論----------------------------------16 3.1 微結構分析----------------------------------16 3.1.1 金相觀察---------------------------------16 3.1.2 微分掃瞄熱分析(DSC)----------------------16 3.1.3 導電度量測-------------------------------21 3.1.4 TEM分析----------------------------------23 3.2 機械性質分析--------------------------------29 3.2.1 硬度試驗---------------------------------29 3.2.2 拉伸試驗---------------------------------31 3.3 應力腐蝕試驗--------------------------------36 3.4 綜合分析------------------------------------40 四、結論----------------------------------------41 五、參考資料------------------------------------42

    1. J. E. Hatch, “ Aluminum: Properties and Physical Metallurgy ”, ASM Metals Park, Ohio, (1984), pp.362
    2. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge, S. Roger, “ After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys ” , Materials Science and Technology, Vol.15, (1999), pp.861-868
    3. 鄭嘉仁, “ Mn含量對A201鋁合金晶粒成長之影響 ”, 國立中央大學機械工程研究所碩士論文,(1993)
    4. J. R. Davis, “ Aluminum and Aluminum Alloys ” , ASM Specialty Handbook ASM International, 3rd printing, (1994), pp.708
    5. S. P. Ringer, K. Hono, T. Sakurai, I. J. Polmear, “ Cluster Hardening in an Aged Al-Cu-Mg Alloy ” , Scripta Materialia, Vol.36, No.5, (1997), pp.517-521
    6. J. Raffin, US Patent No.3475166, Oct.26, (1969)
    7. N. J. Davidson, “ Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0” , AFS, (1988), pp.232-247
    8. J. R. Davis, “ Aluminum and Aluminum Alloys ” , ASM Specialty Handbook ASM International, 3rd printing, (1994), pp.25
    9. B. C. Muddle, I. J. Polmear, “ The Precipctate Ω Phase in Al-Cu-Mg-Ag Alloys ” , Acta Metallurgica, Vol.37, No.3, (1989), pp.777-789
    10. K. M. Knowles, W. M. Stobbs, “ The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys ” , Acta Crystallographica, B44, (1988), pp.207-227
    11. A. Garg, J. M. Howe, “ Convergent-Beam Electron Diffraction Analysis of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy ” , Acta Metallurgica et Materialia, Vol.39, No.8, (1991), pp.1939-1946
    12. R. J. Chester, I. J. Polmear, “ TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys ” , Micron, Vol.11, (1980), pp. 311-312
    13. S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, “ Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures ” , Acta Metallurgica et Materialia, Vol.42, No.5, (1994), pp.1715-1725
    14. K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai, “ Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys ” , Acta Metallurgica et Materialia, Vol.41, No.3, (1993), pp.829-838
    15. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo, “ Discontinuity of G.P.(I) Zone and θ”-Phase in an Al-Cu Alloy ” , Scripta Materialia, Vol.41, No.6, (1999), pp.643-649
    16. 張志鴻, “ 銀含量對於A201鑄造鋁合金Ω相析出影響 ” , 國立中央大學機械工程研究所碩士論文, (2000)
    17. K. Hono, T. Sakurai, I. J. Polmear, “ Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy ” , Scripta Metallurgica et Materialia, Vol.30, No.6, (1994), pp.695-700
    18. A. K. Mukhopadhyay, “ Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Addition of Ag ” , Materials Transactions, JIM, Vol.38, No.5, (1997), pp.478-482
    19. A. Garg, Y. C. Chang, J. M. Howe, “ Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy ” , Scripta Metallurgica et Materialia, Vol.24, (1990), pp.677-680
    20. L. Reich, M. Murayama, K. Hono, “ Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy-A Three-Dimension Atom Probe Study ” , Acta Material, Vol.46, No.17, (1998), pp.6053-6052
    21. F. R. Mollard, “ Influence of Chemical Composition and Heat Treatment on Properties of KO-1 Alloy ” , AFS Trans.,Vol.79, (1970), pp.443-449
    22. I. J. Polmear, M. J. Couper, “ Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperatures ” , Metallurgical Transactions A, Vol.19A, (1988), pp. 1027-1035
    23. Y. S. Kuo, B. C. Wang and E. Chang, “ The Influence of Ag on the Mechanical Properties of A201 Aluminum Alloy ” , AFS Trans., Vol.154, (1988), pp.725-732
    24. 郭永聖、王寶祺、張煥修、林於隆, “ 高強度A201鋁合金中銀元素之研究 ” , 鑄工, 第64期, (1990), pp.15
    25. 郭永聖、張煥修, “ 添加銀及鑄造方案對A201鋁合金平板鑄件機械性質影響之研究 ” , 鑄工, 第75期, (1992), pp.1
    26. S. P. Ringer, K. Hono, I. J. Plomear and T. Sakuria, “ Nucleation of Precipitates in aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios ” , Acta Material, Vol.44, No.5, (1996), pp.1883-1898
    27. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ” , Prentice Hall International, Inc., (1997), pp.235-244
    28. T. Sydbergr and N. G. Vannerberg, “ The Influence of the Relative Humidity and Corrosion Products on the Adsorption of Sulfur Dioxide on Metal Surfaces ” , Corrosion Science, Vol.12, (1972), pp.775-784
    29. 柯賢文, “ 腐蝕及其防治 ” , 全華科技圖書股份有限公司, (1995), pp.167-181
    30. 蔡騰群, “ 超塑性7475鋁鋅鎂合金應力腐蝕性質研究 ” , 國立台灣大學材料科學與工程學研究所博士論文, (1996)
    31. A. J. Sedriks, J. A. S. Green, D. L. Novak, “ On the Chemistry of the Solution at tips of Stress Corrosion Cracks in Al Alloys ”, Corrosion-Nace, Vol.27, No.5, (1971), pp.198-202
    32. R. Braun, “ Evaluation of the Stress Corrosion Cracking Behavior of Damage-Tolerate Al-Li Sheet Using the Slow Strain Rate Testing Technique ” , J. Material Science and Engineering, Vol.A190, (1995), pp.143-154
    33. S. Ohsaki and T. Takahashi, “ Effect of Heat Treatment on Improving the Stress-Corrosion Cracking Resistance of 475 Alloy ” , Japan Institute of Light Metals, Vol.35, (1985), pp.261-268
    34. T. Kawabata and O. Izumi, “ On the intergranular Fracture Mechanism Due to Ledge Formation in An Al-6.0%Zn-2.5%Mg Alloy ” , Journal of Material Science, Vol.14, (1979), pp.1071-1079
    35. E. Hornbogen and K. H. zum Gahr, “Distribution of Plastic Strain in Alloys Containing Small Particles ” , Metallography, Vol.8, (1975), pp.181-202
    36. A. J. De Ardo, Jr and R. D. Townsend, “ The Effect of Microstructure on the Stress-Corrosion Susceptiblity of a high Purity Al-Zn-Mg Alloy in a NaCl Solution” , Metallurgical Transactions, Vol.1, (1970), pp.2573-2581
    37. M. F. Ashby and R. A. Verrall, “ Diffusion-Accommodated Flow and Superplasticity ” , Acta Metallurgica, Vol.21, (1973), pp.149-163
    38. N. Ridley, “ Superplastic Microstructures ” , Material Science & Technology, Vol. 6, (1990), pp.1145-1156
    39. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “ 工程材料科學 ” , 全華科技圖書股份有限公司, (1999), pp.875-877
    40. T. D. Burleigh, “ The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys “ , Corrosion, Vol.47, (1991), pp.89-98
    41. M. S. Misra, K. J. Oswalt, “ Corrosion Behavior of Al-Cu-Ag(201) Alloy ” , Metals Engineering Quarterly, Vol.16, (1976), pp.39-44
    42. M. O. Speidel, M. V. Hyatt, “ Advances in Corrosion Science and Technology “ , Vol.2, (1972), pp.224-243
    43. M. O. Speidel, “ Stress Corrosion Cracking of Aluminum Alloys ” , Metallurgical Transactions A, (1975), pp.631-651
    44. ASTM B597-83, Annual Book of ASTM Standards, Vol.02.02, (1984)
    45. K. Rajan, W. Wallace, J. Beddoes, “ Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy ” , Journal of Materials Science, Vol.17, (1982), pp.2817-2824
    46. S. P. Ringer, B. C. Muddle, and I. J. Polmear, “Effects of Cold Work on Precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) Alloys ” , Metallurgical and Materials Transactions A, Vol.26A, (1995), pp.1659-1671
    47. ASTM B557M-81, Annual Book of ASTM Standards, Vol.03.01, (1991)
    48. A. K. Mukhopadhyay, “ On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy ” , Scripta Materialia, Vol.41, (1999), pp.667-672
    49. A. K. Mukhopadhyay, “ Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg(-Li) Alloys Containing Ag ” , Metallurgical and Materials Transactions A, Vol.30A, (1999), pp.1693-1704
    50. 徐梓益, “ Cu/Mg比對Al-Cu-Mg-Ag合金熱穩定性之影響 ” , 國立中央大學機械工程研究所碩士論文, (2002)
    51. 莊雅傑, “ Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕性之影響 ” , 國立中央大學機械工程研究所碩士論文, (2002)

    QR CODE
    :::