| 研究生: |
余宗鴻 Tsung-hung Yu |
|---|---|
| 論文名稱: |
Wi-Fi室內定位使用粒子群演算法 Wi-Fi Indoor Positioning System Using Particle Swarm Optimization |
| 指導教授: |
林嘉慶
Jia-chin Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系在職專班 Executive Master of Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 室內定位、 、K個最近鄰居演算法 、K分群演算法 、粒子群演算法 |
| 外文關鍵詞: | Indoor positioning system, K Nearest Neighbor algorithm, K-means clustering algorithms, Particle Swarm Optimization |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要利用WiFi AP的訊號強度來進行室內定位,首先透過擷取無線接取點(Wi-Fi Access Point) 內的接收訊號強度(Received Signal Strength Indicator, RSSI)來建構出離線地圖,接下來於線上定位階段正確地取得各個無線接取點(Wi-Fi Access Point)內信標框(beacon frame)的相關資訊,並將接收到的訊號強度轉換成位置資訊;利用各種適用於定位系統的演算法(K個最近鄰居演算法、K分群演算法、粒子群優化演算法)進行室內定位,透過比較這些演算法我們可以發現,本篇論文所使用的粒子群優化演算法(Particle Swarm Optimization,PSO)應用於定位系統上可以達到較高的定位精準度與收斂速度。
根據模擬實驗的結果,本文所提出的粒子群演算法,在平均定位誤差優於其它演算法,平均定位誤差在1M內,最大定位誤差在1.5M內,非常符合智慧型手持式裝置在室內定位服務上的需求。
This thesis is mainly to use the Wi-Fi access points signal strength for indoor positioning. i.e. Received Signal Strength Indicator measurements from multiple Wi-Fi access points. During an offline phase, fingerprints are collected at known positions in the building. This database of locations and the associated fingerprints are called the radio map. During an online phase, the current Wi-Fi fingerprint Particle Swarm optimization are compared with those of the radio map. This paper compared different algorithm, such as K Nearest Neighbor algorithm, K-means clustering algorithms, Particle Swarm Optimization, we can find the Particle Swarm Optimization algorithm on the indoor positioning system can achieve high positioning accuracy and convergence speed.
This simulation results showed the proposed Particle Swarm Optimization algorithm, the average location error better than others, the median error of 1m, the maximum positioning error in 1.5M, it means Particle Swarm Optimization algorithm more suitable for indoor positioning and smart handheld devices.
[1] J. Kim, M. Ji, Y. Cho, Y. Lee and S. Park,“Fingerprint DB generating system exploiting PDR based dynamic collection for indoor localization of smart-phone users,”in Proc. 13th International Conference on Control Automation and Systems (ICCAS), 2013, pp. 715 - 718.
[2] F. Evennou and F. Marx, “Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning,” EURASIP Journal on Advances in Signal Processing, Article ID 86706, 2006, pp. 2–10.
[3] P. Enge and P. Misra, “Special issue on global positioning system,”in Proc. the IEEE, vol. 87, no. 1, pp. 3–15, 1999.
[4] A. Taheri, A. Singh, and A. Emmanuel, “Location fingerprinting on infrastructure 802.11 wireless local area networks (WLANs) using locus,” in Proc. 29th Annual IEEE International Conference on Local Computer Networks, 2004, pp. 676–683.
[5] H. Liu, H. Darabi, P. Banerjee and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 6, pp. 1067–1080, 2007.
[6] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rfbased user location and tracking system,” in Proc. 19th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, 2000, pp. 775–784.
[7] M. A. Youssef, A. Agrawala, and U. Shankar, et al., “WLAN location determination via clustering and probability distributions,”in Proc. the 1st IEEE International Conference on Pervasive Computing And Communications, 2003, pp. 143–150.
[8] A. Agiwal, P. Khandpur, and H. Saran, “Locator: location estimation system for wireless LANs,” in Proc. the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots, 2004, pp. 102–109.
[9] S. H. Cha, “Comprehensive survey on distance/similarity measures between probability density functions,” International Journal of Mathematical Models and Methods in Applied Sciences, pp. 300–307, 2007.
[10] N. L. Dortz, F. Gain and P. Zetterberg, “WiFi fingerprint indoor positioning system using probability distribution comparison,” in Proc. IEEE International Conference on Communications, Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2301 - 2304.
[11] Y. Jeong, “Superanalysis of optimum combining with application to femtocell networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, Apr. pp. 509 - 524, 2012.
[12] H. H. Liu and Y. N. Yang, “Study on the use of a weighted screening method for indoor positioning systems,”in Proc. 15th International Symposium on Wireless Personal Multimedia Communications (WPMC), 2012, pp. 331 - 335.
[13] 趙守彬,「802.11 Rogue Devices的偵測與定位」,國立清華大學資訊工程系,碩士論文,民國九十四年七月。
[14] Y. Zheng, O. Baala and A. Caminada, “Optimization model for an indoor WLAN-based positioning system.”in Proc. International Conference on Indoor Positioning and Indoor Navigaton (IPIN), 2010, pp. 1-7.
[15] S. Khodayari, M. Maleki and E. Hamedi, “A RSS-based fingerprinting method for positioning based on historical data,” in Proc. International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2010, pp. 306-310.
[16] Y. He, W. Meng and L. Ma, “Rapid deployment of APs in WLAN indoor positioning system,” in Proc. 6th International ICST Conference on Communications and Networking in China (CHINACOM), 2011, pp. 268-273.
[17] A. Kushki, K. N. Plataniotis, and A.N. Venetsanopoulos, “Intelligent dynamic radio tracking in indoor wireless local area networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 3, pp. 405 - 419, 2010.
[18] M. Youssef, A. Agrawala and A.U. Shankar, “WLAN location determination via clustering and probability distributions,” in Proc. the First IEEE International Conference on Pervasive Computing and Communications, 2003, pp. 143-150.
[19] Y. Chen, Q. Yang, J. Yin and X. Chai, “Power-efficient access-point selection for indoor location estimation,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, pp. 877 - 888, 2006.
[20] H. Xiong, J. Wu and J. Chen, “K-means clustering versus validation measures:a data-distribution perspective,” IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, vol. 39, pp. 318-331, 2008.
[21] T. Mitchell, “Machine Learning,” McGraw-Hill, Inc. New York, NY, USA, 1997.
[22] L. Xu, X. Liu and S. Zhang, “Improved fingerprint algorithm for WLAN-based vehicle positioning,” in Proc. International Conference on Design and Applications(ICCDA), 2010, pp. 230-234.
[23] M. Borenovic, A. Neskovic and D. Budimir, “Utilizing artificial neural networks for WLAN positioning,” in Proc. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008, pp. 1-5.
[24] L. Ma, X. Ma, X. Liu and Y. Xu, “WLAN indoor positioning algorithm based on sub-regions information gain theory,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 4789 - 4794.
[25] J. J. Caffery and G. L. Stuber, “Overview of radiolocation in CDMA cellular system,” IEEE Communication Magazine, vol. 36, no 4, pp. 38-45, Apr. 1998.
[26] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location : challenges faced in developing techniques for accurate wireless location information,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 20-24, Jul. 2005.
[27] X. Wang, Z. Wang and B. O'Dea, “A TOA-based location algorithm reducing the error due to non-line-of sight(NLOS) propagation,” IEEE Transaction on Vehicular Technology, vol. 52, pp. 112-116, Jan. 2003.
[28] L. Girod and D. Estrin, “Robust range estimation using acoustic and system, ” in Proc. IEEE Conference on Intelligent Robots and systems, vol. 3, 2001, pp. 1312-1320.
[29] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster, “The anatomy of a context-aware application,” in Proc. IEEE Conference on Mobile Computing and Networking(MOBICOM99), 1999, pp. 59-68.
[30] Y. Zhao, H. Zhou, and M. Li, “WiTracker:an indoor positioning system based on wireless LANs,” in Proc. International Conference on Wireless Communications Networking and Mobile Computing, Sept. 2010, pp. 1-4.
[31] D. Niculescu and B. Nath, “Ad-hoc positioning system(APS) using AOA,” in Proc. 22th Annual Joint Conference of the IEEE Computer and Communications, vol. 3, Mar. 2003, pp. 1734-1743.
[32] 盧柏任,「 車輛導航的簡易繞路策略」 國立中央大學資訊工程學系,碩士論文,民國一百年六月。
[33] 謝竣傑,「以類神經網路及基因演算法為基礎之室內定位研究」,朝陽科技大學資訊管理系,碩士論文,民國一百零一年十月。
[34] 莊豐錨,「基於AP選擇和適應性樣式比對之Wi-Fi室內定位策略」,國立臺北科技大學電子工程學系,碩士論文,民國一百零四年二月。
[35] 李重儀,「室內定位之研製與實作」 國立中央大學資訊工程學系,碩士論文,民國九十五年七月。
[36] Dimension:從蘋果併購 WifiSLAM 談談室內定位。2013 年4月1日,取自http://technews.tw/2013/04/01/dimension-from-apple-buy-wifislam/。
[37] Garmin:What is GPS?。1996年,取自http://www8.garmin.com/aboutGPS。
[38]系統設計最佳化實驗室 (SDOL), 最佳化方法。取自 http://ntou-sdol.weebly.com/2636820339212702604127861.html。