跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂定塏
Ding-Kai Lyu
論文名稱: 利用電化學方法製備鎳磷、鈷磷、鎳鈷磷合金材料並探討對氫氣析出反應(HER)之活性
指導教授: 姚學麟
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 鎳磷鈷磷鈷鎳磷電鍍氫氣析出反應
外文關鍵詞: Nickel phosphide, Cobalt phosphide
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本次研究利用次磷酸(NaH2PO2)作為磷來源以電鍍方式沉積鎳磷、鈷磷、鎳鈷磷化合物,並搭配循環伏安儀(cyclic voltammetry, CV)、掃描式電子穿隧顯微鏡(in-situ scanning tunneling microscopy, in-situ STM)及X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS),探討電鍍的反應機制、鍍層的組成及其在鹼性溶液中(1 M KOH)氫氣析出反應(hydrogen evolution reaction, HER)的活性。
      金屬鍍層中摻入磷形成合金可以提高載體的機械強度及抗腐蝕特性,同時今年的理論計算及實驗的研究證實Ni2P(001)、CoP及NiCoP(0001)等固體材料具有極高的電解水活性。本研究所製備之金屬磷化物,在pH 4的硫酸水溶液中,其氧化剝除電位最大向正移將近1.0 V,顯示其抗腐蝕的特性,而電沉積研究發現,次磷酸根可提升薄膜的沉積速率最高約8倍,且電鍍效率(或還原消耗電量用於金屬的沉積)也達到80 %以上。綜合所獲結果顯示鎳鈷磷薄膜的形成大部分是經過磷化氫(PH3)中間物來還原鎳鈷離子,最後同時沉積於金電極上。
      鎳磷與鎳鈷磷化合物的HER活性和薄膜中磷的含量及金屬氧化態有關,隨著鍍層中的磷含量增加,其鎳的束縛能產生明顯的正移,表示其帶有較多的正電,加強它與水解反應產物氫氧根的作用,導致電極活性位置無法有效釋出,最終導致活性的降低;相反的,鈷磷化合物隨磷含量上升,其中鈷的組成接近金屬態,因此減低氫氧根之吸附力,有助於氫氧根的脫附,及活性位置的釋出,且此時帶負電的磷扮演著氫吸附的角色,有助於水分解的反應及提升HER的活性。
      鎳鈷磷與鈷磷化合物展現電化學還原水的電流隨電壓增加的幅度(塔菲爾曲線之斜率)相近,暗示此電化學反應是以相同的機制進行,從STM的結果中觀察到少量不同於鎳鈷之六方最密堆積的扭曲結構,可能就是鎳鈷磷化合物與鈷磷相同的HER活性位置。


    In this study, nickel phosphide, cobalt phosphide and nickel-cobalt phosphide compounds were electrodeposited onto an Au(111) electrode in pH4 electrolyte containing sodium hypophosphite, nickel sulfate, and cobalt sulfate. The mechanism of the electroplating, compositions of the plating, and the activity toward the hydrogen evolution reaction (HER) in alkaline solution were studied by cyclic voltammetry (CV), in-situ scanning electron tunneling microscopy (in-situ STM) and X-ray photoelectron spectroscopy (XPS).
    In addition to their mechanical properties and corrosion resistance properties, some metal phosphides such as Ni2P (0001), CoP and NiCoP (0001) show great activity toward electrolyzing water, according to recent theoretical calculations and experimental results. Indeed, the oxidation or corrosion potential of these as-prepared films shifts positive by nearly 1.0 V. Hypophosphite also catalyzed the reduction rate of Ni and Co cations by 8 times, resulting in a more efficient use of electricity in film fabrication. From the obtained results, it is concluded that all films are formed by reaction with metallic cations with PH3, the product from the reduction reaction of hypophosphite.
    The HER activity of nickel phosphide and nickel-cobalt phosphide is inversely proportional to the content of phosphorus in the deposit. According to the XPS results, the binding energy of 2p electron of nickel shifts positively, indicating a positively charged Ni sites. This would enhance the adsorption of OH-, a product from the H2O reduction reaction, which could impede the release of surface active sites to water molecules. By contrast, the cobalt in the CoP deposit is less positive, which exerts a weaker attraction to OH-, and a fast release of active sites. Therefore, the activity of HER increased with the rise of the proportion of phosphorus in the cobalt phosphide.
    The Tafel slopes obtained with HER at the nickel-cobalt phosphide and cobalt-phosphide are similar (~90 mV/dec), which suggests that the twisted structure from the STM was likely to be the active site of nickel-cobalt phosphide and cobalt phosphide.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1、鐵族金屬磷化物概論 1 1-1-1、直接反應機制(Direct mechanism) 4 1-1-2、間接反應機制(Indirect mechanism) 4 1-2、塔菲爾方程式(Tafel equation)7-8 5 1-2-1、以Volmer反應為速率決定步驟 7 1-2-2、以Tafel反應為速率決定步驟 7 1-2-3、以Heyrovsky反應為速率決定步驟 8 1-3、文獻回顧與研究動機 9 1-3-1、文獻回顧 9 1-3-2、研究動機 11 第二章 實驗部分 12 2-1 藥品部分 12 2-2 氣體部分 12 2-3 金屬部分 12 2-4 儀器設備 12 2-5 實驗步驟 14 第三章 鎳磷化合物沉積於金(111)電極上對於氫氣析出反應的電化學活性 17 3-1 鎳於金(111)電極上之電沉積 17 3-1-1、循環伏安圖16 17 3-1-2、STM圖16 17 3-2 鎳磷化合物於金(111)電極上電沉積的探討 18 3-2-1、金(111)與多晶鉑RRDE在含有次磷酸溶液之循環伏安圖 18 3-2-2、鎳磷化合物沉積於金(111)之循環伏安圖 18 3-2-3、添加不同濃度之次磷酸對鎳磷化合物沉積之循環伏安圖 19 3-2-4、pH值對鎳磷沉積於金(111)之循環伏安圖變化 19 3-2-5、鎳磷化合物沉積於金(111)之STM圖 19 3-2-6、鎳磷化合物之比例分析 20 3-2-6-1、XPS元素分析 20 3-2-6-2、以鉑RRDE進行陽離子剝除線性掃描 21 3-3 鎳磷化合物沉積於金(111)電極上對於產氫反應(HER)之活性 23 第四章 鈷磷化合物沉積於金(111)電極上對於氫氣析出反應的電化學活性 41 4-1、鈷磷化合物沉積於金(111)電極上之循環伏安圖 41 4-2、鈷磷化合物沉積於金(111)電極上之STM圖 42 4-3、鈷磷化合物之比例分析 42 4-3-1、XPS元素分析 42 4-3-2、以鉑RRDE進行陽離子剝除線性掃描 43 4-4、鈷磷化合物沉積於金(111)電極上對於產氫反應(HER)之活性 43 第五章 鎳鈷磷化合物沉積於金(111)電極上對於氫氣析出反應的電化學活性 53 5-1、鎳鈷磷化合物沉積於金(111)電極上之循環伏安圖 53 5-2、鎳鈷磷化合物沉積於金(111)電極上之STM圖 53 5-3、鎳鈷磷化合物之比例分析 54 5-3-1、XPS元素分析 54 5-3-2、以鉑RRDE進行陽離子剝除線性掃描 54 5-4、鎳鈷磷化合物沉積於金(111)電極上對於產氫反應(HER)之活性 55 第六章 結論 64 第七章 參考文獻 66

    1. Riddell, A. B. a. G., Deposition of Nickel and Cobalt by Chemical Reduction. National Bureau of Standards 1947, 39, 385-395.
    2. Zhaoheng, F., Electrodeposition of amorphous Ni-P alloy coatings. Trans. Nonferrous Met. Soc. China 1997, 7 (3), 148-151.
    3. Thomas M. Harris, Q. D. D., The Mechanism of Phosphorus Incorporation during the Electrodeposition of Nickel-Phosphorus Alloys. J. Electrochem. Soc 1993, 140 (1), 81-83.
    4. Tsutomu Morikawa, T. N., Masayuki Yokoi, Yukio Fukumotot and Chiaki Iwakurat, Electrodeposition of Ni-P alloys from Ni-citrate bath. Electrochimica Acta 1997, 42 (1), 115-118.
    5. Robert L. ZeUer, U. L., Electrodeposition of Ni-P Amorphous Alloys. J. Electrochem. Soc 1992, 139 (12), 3464-3469.
    6. M. Saitou, Y. O., and W. Oshikawa, Amorphous Structures and Kinetics of Phosphorous Incorporation in Electrodeposited Ni-P Thin Films. Journal of The Electrochemical Society 2003, 150 (3), C140~C143.
    7. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 2015, 5, 13801.
    8. D. Pletcher, R. G., R. Peat, L.M. Peter and J. Robinson, Instrumental Methods in Electrochemistry. 2001.
    9. Ping Liu, J. A. R., Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871-14878.
    10. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 2013, 135 (25), 9267-9270.
    11. Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C., Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8 (3), 1027-1034.
    12. Yuan, Q., Ariga, Hiroko, Asakura, Kiyotaka, An Investigation of Ni2P Single Crystal Surfaces: Structure, Electronic State and Reactivity. Topics in Catalysis 2015, 58 (4-6), 194-200.
    13. Moon, J.-S.; Jang, J.-H.; Kim, E.-G.; Chung, Y.-H.; Yoo, S. J.; Lee, Y.-K., The nature of active sites of Ni2P electrocatalyst for hydrogen evolution reaction. Journal of Catalysis 2015, 326, 92-99.
    14. Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlogl, U.; Alshareef, H. N., Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Lett 2016, 16 (12), 7718-7725.
    15. W. J. ALBERY, S. B., Ring-Disc Electrodes Part 2.-Theoretical and Experimental Collection Efficiencies. Trans. Faraday Soc. 1966, 62, 1920-1931.
    16. Allongue, P.; Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science 2004, 557 (1-3), 41-56.
    17. CRC Handbook of Chemistry and Physics, Internet Version 2005, <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005.
    18. Nemoshalenko V.V., D. V. V., Krivitskii V.P., Senekevich A.I., Study of the Charge State of Atoms in Iron, Cobalt and Nickel Phosphides. Zh. Neorg. Khimii 1983, 28, 2182.
    19. Venezia A.M., B. R., Deganello G., X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surf. Interface Anal. 1995, 23, 239.
    20. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 2012, 11 (6), 550-557.
    21. Yuanyuan Tan, D. S., Hongying Yu, Bin Yang, Yu Gong, Shi Yan, Zhongjun Chen, Quan Caib and Zhonghua Wu, Crystallization mechanism analysis of noncrystalline Ni-P nanoparticles through XRD, HRTEM and XAFS. CrystEngComm 2014, 16, 9657-9668.
    22. M.G., M. N. S. C., X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 1975, 47, 2208.
    23. Andersson S.L.T., H. R. F., An x-ray photoelectron study of metal clusters in zeolites. J. Phys. Chem. 1989, 93, 4913.
    24. M. L. Sui, K. L., Variation in lattice parameters with grain size of a nanophase Ni3P
    compound. Materials Science and Engineering, 1994, A179|A180, 541-544.
    25. Kim, D.-R.; Cho, K.-W.; Choi, Y.-I.; Park, C.-J., Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution. International Journal of Hydrogen Energy 2009, 34 (6), 2622-2630.
    26. Wang, J.; Johnston-Peck, A. C.; Tracy, J. B., Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures. Chemistry of Materials 2009, 21 (19), 4462-4467.
    27. Koper, M. T. M., Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. Journal of Solid State Electrochemistry 2012, 17 (2), 339-344.
    28. Wu, Y.; Cai, S.; Wang, D.; He, W.; Li, Y., Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J Am Chem Soc 2012, 134 (21), 8975-8981.
    29. Chang, J.; Feng, L.; Liu, C.; Xing, W.; Hu, X., Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy & Environmental Science 2014, 7 (5), 1628.
    30. Callejas, J. F.; Read, C. G.; Popczun, E. J.; McEnaney, J. M.; Schaak, R. E., Nanostructured Co2P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP. Chemistry of Materials 2015, 27 (10), 3769-3774.
    31. Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C. M.; Liu, Y. S.; Nie, K.; Sun, X.; Guo, J.; Leone, S. R.; Yang, P., Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc 2015, 137 (23), 7448-7455.
    32. Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M., The synthesis of nanostructured Ni5 P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed Engl 2015, 54 (42), 12361-12365.
    33. Liu, Y.; Hangarter, C. M.; Garcia, D.; Moffat, T. P., Self-terminating electrodeposition of ultrathin Pt films on Ni: An active, low-cost electrode for H 2 production. Surface Science 2015, 631, 141-154.
    34. Feng, Y.; Yu, X. Y.; Paik, U., Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem Commun (Camb) 2016, 52 (8), 1633-6.
    35. Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E., General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Appl Mater Interfaces 2016, 8 (20), 12798-12803.
    36. Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 2016, 45 (6), 1529-1541.
    37. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M., Energy and fuels from electrochemical interfaces. Nat Mater 2016, 16 (1), 57-69.
    38. Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M., Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29-36.
    39. Wurster, B., Grumelli, D., Hotger, D., Gutzler, R., Kern, K., Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts. J Am Chem Soc 2016, 138 (11), 3623-6.

    QR CODE
    :::