跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林書丞
Shu-Cheng Lin
論文名稱: 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析
Single-source Vacuum Deposition of Inorganic Perovskite Thin Film and Characteristic Analysis
指導教授: 詹佳樺
Chia-Hua Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 無機鈣鈦礦單源熱蒸鍍薄膜表面形貌
外文關鍵詞: Inorganic perovskite, Single-source thermal evaporation, Thin film, Morphology
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機鈣鈦礦材料具有優異的光學特性和熱穩定性相較於有機鈣鈦礦材料,因此已廣泛應用在光學元件當中,其中製備成鈣鈦礦薄膜的方式大多以溶液製程為主,有化學溶劑汙染環境的困境,而採用熱蒸鍍沉積法為解決的方法之一。因此本論文以單源熱蒸鍍的方式進行無機鈣鈦礦薄膜的製備,與傳統的雙源共蒸鍍法相比,製程無需準確控制蒸鍍原料之鍍率和熱處理等優勢。並且使用由實驗室以水系統合成的CsPbBr3粉末作為蒸鍍原料,可提升熱蒸鍍製程中鈣鈦礦薄膜的品質。
    為了證明蒸鍍單一相CsPbBr3粉末的優勢,將混和CsBr和PbBr2粉末至坩堝中進行比較。除此之外,我們也探討CsPbBr3粉末在不同蒸鍍溫度所沉積的鈣鈦礦薄膜組成分,發現隨著蒸鍍溫度與預鍍時間的變化,會影響鈣鈦礦薄膜中Pb原子的比例,進而衍生出CsPb2Br5晶體或Cs4PbBr6晶體,因此我們透過調整蒸鍍溫度與延遲預鍍時間的方式,改善蒸鍍過程中鈣鈦礦薄膜的原子比例,並且可製備CsPb2Br5、CsPb2Br5-CsPbBr3、CsPbBr3、CsPbBr3-Cs4PbBr6的鈣鈦礦薄膜。由XRD、SEM、TEM、XPS分析不同蒸鍍參數的晶格結構、表面形貌與化學組成分,同時使用UV-Vis、PL、UPS分析不同鈣鈦礦薄膜之光學特性,其中製備的CsPbBr3薄膜能帶結構位置為CBM : -3.43 eV與VBM : -5.76 eV,此研究有助於在光電元件之能階匹配。
    本研究成功的以實驗室自行合成的CsPbBr3粉末進行單源熱蒸鍍的製程,製備具有連續性、緻密、無孔洞的高品質無機鈣鈦礦薄膜,未來將採用此技術應用於太陽能電池與發光二極體中,期望元件具有優異的轉換效率。


    In this study, we prepared the perovskite film by single-source vacuum deposition. Compared with the conventional dual-source co-evaporation method, single-source vacuum deposition will be fast and simple; and the CsPbBr3 powder synthesized by the water-based system. To improve the quality of the perovskite film during the thermal evaporation process. We were mixed CsBr and PbBr2 powder into the crucible to compare CsPbBr3 powder have high purity thin film by single-source vacuum deposition. Therefore, we discuss the perovskite film at different evaporation temperatures. The different of temperature and pre-evaporation process will affect the content of Pb in the thin film, and then derivative the Cs4PbBr6 or CsPb2Br5 phase. We used the XRD, SEM and TEM to analyze perovskite thin film of different evaporation parameters. We adjusted the temperature and pre-evaporation process to improve the ratio of Cs and Pb during the evaporation process. Moreover, Single- source vacuum deposition without a post-heat-treating process was used to prepare high-quality CsPbBr3 thin films. And we also analyze the perovskite film of different crystal phases, where CsPbBr3 thin film has emission wavelength at 525 nm and FWHM less than 18.5 nm. According to UPS analysis, the valence band maximum (VBM) and the conduction band minimum (CBM) were calculated to be -5.76 eV and -3.43 eV. Finally we fabricated high-quality CsPbBr3 thin films and applied to photovoltaic light-emitting diode by single-source vacuum deposition.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第1章 緒論 1 1-1 前言 1 1-2 鈣鈦礦介紹 2 1-3 鈣鈦礦薄膜演進 3 1-3-1 鈣鈦礦量子點薄膜之應用 6 1-3-2 鈣鈦礦薄膜之應用 11 1-3-2-1溶液製程 11 1-3-2-2熱蒸鍍製程 17 1-4 研究動機 22 第2章 實驗方法 23 2-1 實驗材料及儀器 23 2-1-1 實驗材料 23 2-1-2 實驗儀器 23 2-2 實驗步驟 25 2-2-1 玻璃基板清洗 25 2-2-2 單源熱蒸鍍製程 25 第3章 結果與討論 27 3-1 CsPbBr3 粉末之物理性質 27 3-2 鈣鈦礦薄膜之材料分析 29 3-2-1 X光繞射分析 29 3-2-1-1 預鍍時間 1min (440℃、470℃、500℃) 29 3-2-1-2 預鍍時間 3min (440℃、470℃、500℃) 31 3-2-1-3 蒸鍍溫度 490℃ (預鍍時間1min和3min) 31 3-2-1-4 Scherrer 方程式計算平均晶粒尺寸 33 3-2-2 SEM 表面形貌分析 34 3-2-2-1 預鍍時間1min 34 3-2-2-2 預鍍時間3min 36 3-2-3 TEM 晶格繞射分析 38 3-2-3-1 蒸鍍參數470℃-1min (CsPb2Br5 薄膜) 38 3-2-3-2 蒸鍍參數490℃-3min (CsPbBr3 薄膜) 40 3-2-3-3 蒸鍍參數500℃-3min (CsPbBr3-Cs4PbBr6 薄膜) 42 3-2-4 XPS 表面成分分析 44 3-3 鈣鈦礦薄膜光學性質分析 46 3-3-1 UV-Vis 分析 46 3-3-2 PL 分析 48 3-3-3 UPS 分析 50 第4章 結論 52 參考文獻 53

    [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” vol. 131, no. 17, pp. 6050-6051, 2009.
    [2] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci Rep, vol. 2, pp. 591, 2012.
    [3] N. J. Jeon, H. Na, E. H. Jung, T. Y. Yang, Y. G. Lee, G. Kim, H. W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nature Energy, vol. 3, no. 8, pp. 682-689, 2018.
    [4] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat Nanotechnol, vol. 9, no. 9, pp. 687-92, Sep, 2014.
    [5] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. J. S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” vol. 350, no. 6265, pp. 1222-1225, 2015.
    [6] F. Yan, J. Xing, G. Xing, L. Quan, S. T. Tan, J. Zhao, R. Su, L. Zhang, S. Chen, Y. Zhao, A. Huan, E. H. Sargent, Q. Xiong, and H. V. Demir, “Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes,” Nano Lett, vol. 18, no. 5, pp. 3157-3164, May 9, 2018.
    [7] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett, vol. 15, no. 6, pp. 3692-6, Jun 10, 2015.
    [8] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, “CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes,” Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
    [9] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 ),” Adv Mater, vol. 27, no. 44, pp. 7162-7, Nov 25, 2015.
    [10] J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, and O. M. Bakr, “Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering,” Adv Mater, vol. 28, no. 39, pp. 8718-8725, Oct, 2016.
    [11] J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng, “50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control,” Adv Mater, vol. 29, no. 5, Feb, 2017.
    [12] T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata, J. J. A. a. m. Kido, and interfaces, “High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment,” vol. 9, no. 21, pp. 18054-18060, 2017.
    [13] X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X. W. Sun, “All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites,” Advanced Functional Materials, vol. 26, no. 25, pp. 4595-4600, 2016.
    [14] B. S. Zhu, H. Z. Li, J. Ge, H. D. Li, Y. C. Yin, K. H. Wang, C. Chen, J. S. Yao, Q. Zhang, and H. B. Yao, “Room temperature precipitated dual phase CsPbBr3-CsPb2Br5 nanocrystals for stable perovskite light emitting diodes,” Nanoscale, vol. 10, no. 41, pp. 19262-19271, Nov 7, 2018.
    [15] Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang, and B. Sun, “Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes,” ACS Appl Mater Interfaces, vol. 10, no. 4, pp. 3784-3792, Jan 31, 2018.
    [16] J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, and H. Zeng, “Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs,” Adv Mater, vol. 30, no. 30, pp. e1800764, Jul, 2018.
    [17] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes,” J Phys Chem Lett, vol. 6, no. 21, pp. 4360-4, Nov 5, 2015.
    [18] Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. Perez-Orive, Y. Du, L. Tan, K. Hanson, B. Ma, and H. Gao, “Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes,” Adv Mater, vol. 28, no. 40, pp. 8983-8989, Oct, 2016.
    [19] X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy, vol. 37, pp. 40-45, 2017.
    [20] C. Wu, Y. Zou, T. Wu, M. Ban, V. Pecunia, Y. Han, Q. Liu, T. Song, S. Duhm, and B. Sun, “Improved Performance and Stability of All-Inorganic Perovskite Light-Emitting Diodes by Antisolvent Vapor Treatment,” Advanced Functional Materials, vol. 27, no. 28, 2017.
    [21] H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J. M. Heo, S. Ahn, and T. W. Lee, “High-Efficiency Solution-Processed Inorganic Metal Halide Perovskite Light-Emitting Diodes,” Adv Mater, vol. 29, no. 31, Aug, 2017.
    [22] F. X. Yu, Y. Zhang, Z. Y. Xiong, X. J. Ma, P. Chen, Z. H. Xiong, and C. H. Gao, “Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene,” Organic Electronics, vol. 50, pp. 480-484, 2017.
    [23] L. P. Cheng, J. S. Huang, Y. Shen, G. P. Li, X.-K. Liu, W. Li, Y. H. Wang, Y. Q. Li, Y. Jiang, F. Gao, C. S. Lee, and J. X. Tang, “Efficient CsPbBr3 Perovskite Light-Emitting Diodes Enabled by Synergetic Morphology Control,” Advanced Optical Materials, vol. 7, no. 4, 2019.
    [24] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, and Z. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature, vol. 562, no. 7726, pp. 245-248, Oct, 2018.
    [25] H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, S. V. Kershaw, L. Zhang, A. L. Rogach, and X. Yang, “Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices,” Nat Commun, vol. 10, no. 1, pp. 665, Feb 8, 2019.
    [26] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-8, Sep 19, 2013.
    [27] L. Gil-Escrig, A. Miquel-Sempere, M. Sessolo, and H. J. Bolink, “Mixed Iodide-Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics,” J Phys Chem Lett, vol. 6, no. 18, pp. 3743-8, Sep 17, 2015.
    [28] J. Lei, F. Gao, H. Wang, J. Li, J. Jiang, X. Wu, R. Gao, Z. Yang, and S. Liu, “Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation,” Solar Energy Materials and Solar Cells, vol. 187, pp. 1-8, 2018.
    [29] H. Li, G. Tong, T. Chen, H. Zhu, G. Li, Y. Chang, L. Wang, and Y. Jiang, “Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells,” Journal of Materials Chemistry A, vol. 6, no. 29, pp. 14255-14261, 2018.
    [30] K. M. Chiang, B. W. Hsu, Y. A. Chang, L. Yang, W. L. Tsai, and H. W. Lin, “Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices,” ACS Appl Mater Interfaces, vol. 9, no. 46, pp. 40516-40522, Nov 22, 2017.
    [31] Y. Hu, Q. Wang, Y. L. Shi, M. Li, L. Zhang, Z. K. Wang, and L. S. Liao, “Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes,” Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8144-8149, 2017.
    [32] F. Yuan, J. Xi, H. Dong, K. Xi, W. Zhang, C. Ran, B. Jiao, X. Hou, A. K. Y. Jen, and Z. Wu, “All-Inorganic Hetero-Structured Cesium Tin Halide Perovskite Light-Emitting Diodes With Current Density Over 900 A cm−2 and Its Amplified Spontaneous Emission Behaviors,” physica status solidi (RRL) - Rapid Research Letters, vol. 12, no. 5, 2018.
    [33] J. Yin, Y. Zhang, A. Bruno, C. Soci, O. M. Bakr, J. L. Brédas, and O. F. Mohammed, “Intrinsic Lead Ion Emissions in Zero-Dimensional Cs4PbBr6 Nanocrystals,” ACS Energy Letters, vol. 2, no. 12, pp. 2805-2811, 2017.
    [34] P. Acharyya, P. Pal, P. K. Samanta, A. Sarkar, S. K. Pati, and K. Biswas, “Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties,” Nanoscale, vol. 11, no. 9, pp. 4001-4007, Feb 28, 2019.
    [35] J. Li, H. Zhang, S. Wang, D. Long, M. Li, Y. Guo, Z. Zhong, K. Wu, D. Wang, and T. Zhang, “Synthesis of all-inorganic CsPb2Br5 perovskite and determination of its luminescence mechanism,” RSC Advances, vol. 7, no. 85, pp. 54002-54007, 2017.

    QR CODE
    :::