| 研究生: |
盧建宏 Chien-hung Lu |
|---|---|
| 論文名稱: |
台灣現地材料之弱帶對用過核燃料地下處置場熱應力與地下水影響分析 Taiwan situ material thermal stress and ground water analysis of weak band effect for spent nuclear fuel waste underground disposal |
| 指導教授: | 張瑞宏 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 衰變熱 、用過核燃料 、深層地質處置 、花崗岩 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核廢料的處理一直是各核能國家關切的問題。我國用過核燃料處置計畫管理策略上,係採乾式貯存並尋求國際合作(境外)處置機會,在境外處置未具體可行前,將持續進行境內直接最終處置之地質調查技術發展。目前國際上認為,用過核燃料以深層地質處置(deep geological disposal)為較可行的方法。
研究中採用台灣電力公司「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段成果報告」之探勘數據及其規劃之處置場尺寸,以有限元素分析法進行三維模型分析。
熱應力分析方面則採用依序耦合熱應力分析(Sequentially coupled thermal-stress analysis)。而由於台灣位處地震帶上,頻繁之地震可能造成處置場上方產生勁度較低之弱帶,本研究將針對弱帶之勁度與長度改變對處置場所造成影響進行分析與探討。
於研究結果中得知,在弱帶長度增加或弱帶勁度降低的情況下,處置場所承受之水平應力增量皆有增加之趨勢,反而垂直應力增量有下降之趨勢,而弱帶的產生也會使得處置場水流量上升,造成核種外洩之危險。
關鍵字:衰變熱、用過核燃料、深層地質處置、花崗岩
Nuclear waste disposal is an important issue that every nuclear power country is very concerned. The management strategy in Taiwan is using dry storage and seeking overseas disposal. Before this project feasibility is confirmed, it will be continue to investigate the final disposal technique in the domestic. Deep geological disposal is recognized internationally as a feasible method.
In this study, using Taiwan Power Company ”The report of the host rock characteristics survey and assessment in final disposal of spent nuclear fuel plan.” Choosing its exploration data and disposal field size, using finite element method and 3D model to analysis.
Thermal stress analysis adopt sequentially coupled thermal-stress analysis. Because Taiwan is located in the earthquake zone, the earthquake may create weak band in the top of disposal field. This research will focus on the effect of weak band’s stiffness and length.
In this study, when the weak band’s length increases or stiffness decreases, the horizontal stress on the disposal site will increase. But the vertical stress will decrease. And when the weak band occurs, the water flow of the disposal site will increase, it may cause leakage of dangerous radionuclides.
Keywords: decay heat, spent nuclear fuel waste, deep geological disposal, granite.
【1】 ABAQUS User’s Manual Vol.I, Version 6.12。
【2】 G.-S. Lee and C.-I. Lee “Thermo-hydrological analysis to predict the temperature distribution around a cold storage cavern” Elsevier Geo-Engineering Book Series,2004, Pages 779-784
【3】 Jan Hernelind “Coupled thermal-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole”, SKB Report,1999.
【4】 JNC,H12-Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Japan Nuclear Cycle Development Institute, April 2000.
【5】 Rutqvist J. and Tsang C.-F. “A fully coupled three-dimensional thm analysis of the febex in situ test with the rocmas code: prediction of thm behavior in a bentonite barrier” Elsevier Geo-Engineering Book Series,2004, Pages 143-148
【6】 KBS, “Final Storage of Spent Nuclear Fuel – KBS-3, vol.Ⅰ: GENERAL ; VOL.Ⅱ: GEOGLOGY ; vol.Ⅲ: BARRIERS; vol.Ⅳ: Safety”, Swedish Nuclear Fuel Supply Co/Division KBS, Stockholm , Sweden, May 1983.
【7】 KBS, “Deep Repository for Spent Nuclear Fuel: SR 97- Post-Closure Safety”, Swedish Nuclear Fuel Supply Co/Division KBS , Stockholm , Sweden , November 1999.
【8】 Knutsson, S., “On the thermal conductivity and thermal diffusivity of highly compacted bentonite ” SKB Technical Report 83-72, 1983.
【9】 M. Kohlmerier R. Kaiser and W. Zielke “Numerical Simulation of Variably Coupled Thermo-Hydro-Mechanical Processes in Fractured Porous Media” Elsevier Geo-Engineering Book Series,2004
【10】 Nguyen, T.S. ,“Coupled thermal-mechanical behavior of sparsely fractured rock:implication for nuclear fuel waste disposal”, Engineering Geology, Vol.32, pp.465-479, 1995.
【11】 R.T. Green and S. Painter “Numerical simulation of thermal-hydrological processes observed at the drift-scale heater test at yucca mountain, nevada” Elsevier Geo-Engineering Book Series,2004
【12】 Rutqvist, J.,“A modeling approach for analysis of coupled multiphase heat transfer, and deformation in fractured porous rock.”Earth Sciences Division, Lawrence Berkely Nation Laboratory, MS 90-1116,Berkely, CA947 20,USA,2002 .
【13】 Selvadurai, A.P.S., and Nguyen, T.S., “Scoping analyses of the coupled thermal-hydrological-mechanical behavior of the rock mass around a nuclear fuel waste repository,” Engineering Geology, Vol.47, pp.379-400, 1996.
【14】 SKB, “Final Disposal of spent Nuclear Fuel ,Important of the Bedrock for Safety”, SKB Technical Report 92-20 , Sweden, 1991.
【15】 SKB, Feasibility Studies - Östhammar, Nyköping, Oskarshamn, Tierp, Hultsfred and Älvkarleby:Summary Report,Techical Report TR-01-16,P11,June 2001.
【16】 台灣電力公司核能後端營運處,「地質實驗試坑規劃報告」。
【17】 台灣電力公司「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段成果報告」,2005 ~ 2011。
【18】 陳文泉、黃偉慶,「深地層處置緩衝材料熱-水力-機械-化學耦合作用探討」,核研季刊第42期,第38-48頁,2002。
【19】 蔡世欽,「深層地質處置概念熱效應與處置坑到配置之分析(期中報告初稿)」,我國用過核燃料長程處置潛在母岩特性調查於評估階段發展初步功能/安全評估模式(第一年計畫),2000。
【20】 紀立民等,「工業污染防治-土壤及地下水污染整治-用過河燃料深層地質處置概念之研究與發展」,經濟部工業局,VOL.21 NO.4,2002。
【21】 邱太銘,「國外用過核燃料/高放射性廢料最終處置現況」,行政院原子能委員會核能研究所化工組,1999。
【22】 邱太銘,「放射性廢棄物管理」,財團法人中興工程科技研究發展基金會,2002。
【23】 邱太銘,「國外放射性廢棄物管理技術研究與發展近況」,INER-2481,行政院原子能委員會核能研究所,2003。
【24】 施國欽,「大地工程學(一)土壤力學篇」,文笙出版社,1998。
【25】 陳世芳,「理論土壤力學與實用基礎工程」,文笙出版社,2004。
【26】 賴成銑,「熱傳校應對用過核燃料處置之影響」,INER-T2675,原子能委員會核能研究所,2000。
【27】 劉尚志、張璞、焦自強,「高放射性廢料深層地質處置」,原子能委員會核能彙刊,第二十四卷,第五期,第2-33頁,1988。
【28】 劉尚志、林鴻旭、焦自強、張璞,「高放射性廢料終極處置-工程障壁之探討」,原子能委員會核能彙刊,第二十五卷,第四期,第42-51頁,1988。
【29】 謝馨輝,「核廢料地下處置之熱傳導及初步熱應變分析」,國立中央大學土木工程研究所碩士論文,中壢,2003。
【30】 林志信,「台灣地下處置場之熱傳導與熱應變之影響參數分析」,國立中央大學土木工程研究所碩士論文,中壢,2005。
【31】 范振峰,「台灣地下處置場之熱傳導與熱應變之影響參數分析」,國立中央大學土木工程研究所碩士論文,中壢,2006。
【32】 廖久智,「裂縫對用過核燃料地下處置場之熱應力與地下水影響分析」,國立中央大學土木工程研究所碩士論文,中壢,2012。