| 研究生: |
張明光 Ming-Koung Chang |
|---|---|
| 論文名稱: |
使用基因演算法設計離散性T-S模糊控制器實現輪型行動機器人之軌跡控制 Design of GA-Based Discrete-Time T-S Fuzzy Controller and Applications in a Wheeled Mobile Robot |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | T-S模糊系統 、基因演算法 、數位影像處理 |
| 外文關鍵詞: | Digital Image Process, Genetic Algorithms, T-S Fuzzy System |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個新穎的T-S模糊系統之模糊控制器設計方法,此方法之設計概念是根據基因演算法與線性矩陣不等式理論基礎架構而成,藉此設計方式,模糊控制器的迴授增益可不經由繁複的數學推導及計算而自動地被尋得,論文中也將此設計方法應用在輪型行動機器人的軌跡控制問題上。
在本論文中,首先對使用線性矩陣不等式方法求解的輪型行動機器人軌跡控制模糊控制器所造成不良影響做一敘述,並介紹如何以本論文提出之設計方法來改善,且在論文中以模擬及實作的方式呈現其控制效果,確認本論文所提出之結合基因演算法與線性不等式設計方式的有效性及正確性。
在實作驗證部分,本論文利用影像處理技術擷取輪型行動機器人動態,並在C++ Builder撰寫模糊控制器程式及利用單晶片PIC16F877進行馬達轉速控制,而整個輪型機器人之操控及訊號處理均建構在視窗環境下。
A novel design method for T-S fuzzy controller is proposed in this thesis. The method is based on the genetic algorithm and linear matrix inequality. The controller feedback gains can be found automatically without complex mathematical calculation via this approach. The approach is applied to the trajectory control of a Wheeled Mobile Robot.
In this thesis, we describe the ill influences of trajectory control of WMR’ fuzzy controller by using LMI method. We also introduce how to improve the effect by the proposed method. The results are shown by simulations and experiments with WMR to ensure the feasibility and the validity of our proposed method.
In the part of implementation, we use the technology of image process to acquire movements of WMR. In order to operate WMR, the fuzzy control program was designed by C++ Builder and motor speed is controlled by microchip PIC16F877. All of the operations of WMR and signal processes are designed under the circumstances of windows.
[1] C. K. Benjamin, Automatic Control System, Englewood Cliffs, N.J:
Prentice-Hall, 1987.
[2] S. Boyd et al., Linear Matrix Inequalities in System and Control
Theory, Philadelphia, PA: SIAM, 1994.
[3] Z. Fan, Y. Koren and D. Wehe, “Tracked mobile robot control: hybrid
approach”, Control Engineering Practice, Vol. 3, No. 3, pp.329-336,
1995.
[4] D. Goldberg, Genetic Algorithms in search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.
[5] M. Gen and R. Cheng, Genetic Algorithms & Engineering Design, John
Wiley & Sons, Inc., 1997.
[6] P. Gahinet, A. Nemirovski, A. J. Laub, M. Chilali, LMI Control
Toolbox For Use with MATLAB, The MATH WORKS, Inc.
[7] C. G. Rafael, E. W. Richard, Digital Image Process, Reading, Mass :
Addison-Wesley, 1992.
[8] J. H. Holland, “Adaptation in Natural and Artifical System”, Ann
Arbor, MI: The University of Michigan Press, 1975.
[9] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its
Applications to Modeling and Control”, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-15, No. 1, pp. 116-132, 1985.
[10] K. Tanaka and M Sano, “A Robust Stabilization Problem of Fuzzy
System and Its Application to Backing up Control of Truck-Trailer”,
IEEE Transactions on Fuzzy Systems, Vol. 2, No. 2. pp.119-134, 1994.
[11] K. Tanaka and M. Sano, “Trajectory stabilization of a model car via
fuzzy control”, Fuzzy Sets and Systems, pp.155-170, 1995.
[12] K. Tanaka and T. Kosaki, “Design of a Stable Fuzzy Controller for an
Articulated Vehicle”, IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, Vol. 27, No 3, pp.552-558, 1997.
[13] K. Tanaka, M. Iwasaki and H. O. Wang, “Stable Switching Fuzzy
Control and Its Application to a Hovercraft Type Vehicle”,
Proceedings of FUZZY-IEEE, pp.804-809, 2000.
[14] K. Tanaka, M. Iwasaki and H. O. Wang, “Switching Control of R/C
Hovercraft: Stabilization and smooth Switching”, IEEE Transactions
on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 31, No 6,
pp.853-863, 2001.
[15] T. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy
Control System”, Fuzzy Sets System, Vol. 45, No. 2, pp. 135-156, 1992
[16] K. Tanaka, T. Ikeda and H.O. Wang, “Fuzzy Regulators and Fuzzy
Observers: Relaxed Stability Conditions and LMI-based Designs”, IEEE
Transactions on Fuzzy Systems, Vol. 6, No. 2, pp. 250-265, 1998.
[17] K. Tanaka and H. O. Wang, Fuzzy Control Systems Analysis and Design:
A Linear Matrix Inequality Approach, New York: Wiley, 2001.
[18] H. O. Wang, K. Tanaka, M. F. Griffin, “Parallel Distributed
Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy model”,
Proceedings of FUZZY-IEEE, pp.531-538, 1995.
[19] H. O. Wang, K. Tanaka, M. F. Griffin, “An approach to fuzzy control
of nonlinear systems stability and design issues” IEEE Transactions
on Fuzzy Systems, Vol. 4, No. 1, pp. 14-23, 1996.
[20] PIC16F87X Data Sheet, Microchip, 1999.
[21] 王文俊, 認識Fuzzy, 全華科技, 2000.
[22] 周鵬程, 遺傳演算法原理與應用-活用Matlab, 全華科技, 2001.
[23] 繆紹剛, 數位影像處理 活用-Matlab, 全華科技, 2000.
[24] 余明興, 吳明哲, Borland C++ Builder 4 學習範本, 松岡, 1999.
[25] 李勁, 鄭浩, 精通C++ Builder 5.0, 文魁, 2002.
[26] 范逸之, 江文閒, 陳立元, C++ Builder與RS-232串列通訊控制, 文魁, 2002.
[27] 張智星, Matlab程式設計與應用, 清蔚科技, 2000.
[28] 趙春棠, PIC單晶片學習秘笈, 全威, 2002.
[29] 施慶隆, PIC16F87X微控制器原理實習與專題應用, 全華科技, 2001.