跳到主要內容

簡易檢索 / 詳目顯示

研究生: 方偉德
Wei-Te Fang
論文名稱: 大氣與森林之間紊流流場之風洞實驗
Wind tunnel measurements of turbulence flow between the plant canopies and atmosphere
指導教授: 朱佳仁
Chia-Ren Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 158
中文關鍵詞: 混和層流風洞森林紊流
外文關鍵詞: wind tunnel, plant canopies, turbulence flow, m
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣與森林之間的動量、熱量和質量(水汽、二氧化碳、氧氣、種子、花粉等)的傳輸不僅會影響到植物的生長,亦對森林區的蒸發散和地表附近的微氣候有重大的影響,為全球環境的變遷中重要的一環。本研究以風洞實驗來探討大氣與森林之間的混合層流,實驗中放置模型樹於風洞中的紊流邊界層之中,並改變樹木的疏密度和排列方式,在不同的下風距離量測平均風速和紊流參數,並在相鄰的兩點同時量測紊流流速,以瞭解紊流流場的相關性,以釐清樹木的疏密度和排列方式對森林之中的尾流及森林之上的混合層流的影響。實驗結果顯示(1)森林流場的風速剖面可由迴歸公式所表示;(2)在森林流場中動量的傳輸受到掃流(sweep)與噴流項(ejection)的控制,樹林愈密集的流況中掃流項對動量傳輸的貢獻愈大;(3)在樹頂之下(X/H < 1.2)縱向風速的偏度係數(右偏分佈),但垂向風速的偏度係數卻小於零(左偏分佈),這顯示樹林之中的掃流發生的機率較大。在樹頂之下(X/H < 1.2)縱向風速和垂向風速皆偏離高斯分佈,但樹林之上(X/H > 2)接近高斯分佈;(4)森林與大氣之間的傳輸率可以由垂向渦流黏滯係數(Eddy viscosity) 表示, 隨高度增加而增加,當樹木愈稀疏時則 愈大, 為渦流的混合長度(Mixing length),當樹林愈稀疏時,則混合長度也愈大 。


    The turbulence transport of momentum, heat and mass (water vapor, CO2, O2, seed and pollen) between the plant canopies and atmosphere not only affect the growth of plants, but also influence the evaporation, transpiration and micro-meteorology of forest area. This study used wind tunnel experiment to investigate the mixing layer flow above the plant canopy and wake flow in the canopy. Mean velocity profiles and turbulence parameters were measured at several down-wind distances. Based on the velocity measurements, the shear velocity, roughness length, displacement height, momentum thickness and cross-correlation function all were calculated and analyzed. The results showed that: Mean velocity profiles were related to canopy spacing and could be non-dimensionalized. The momentum transport was dominated by the sweep and ejection events above the tree top.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 符號表 X 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究內容及大綱 2 第二章 理論基礎與文獻回顧 5 2.1 大氣邊界層流 5 2.2 森林風場特性 6 2.3雷諾剪應力與紊流強度 9 2.4 紊流動能與紊流動能消散率 11 2.5 邊界層厚度 12 2.6森林流場之相關文獻 15 第三章 實驗設備與方法 24 3.1 風洞實驗 24 3.2 風速量測方法 28 3.3 大氣邊界層模擬 29 3.4 實驗方法 30 3.4.1 控制條件 30 3.4.2 誤差分析 31 3.4.3 實驗數據採樣技巧 32 3.4.4 相關函數 33 3.4.5 頻譜分析方法 34 第四章 結果與討論 56 4.1 迫近流場 56 4.2 森林流場特性 57 4.3 平均風速 61 4.3.1平均速度剖面S = 10 cm 61 4.3.2局部效應 62 4.4 紊流速度之分析 62 4.4.1紊流強度剖面 62 4.4.2雷諾剪應力 63 4.4.3積分長度尺度 63 4.4.4 頻譜分析 63 4.5 不同森林間距比較 64 4.5.1平均速度剖面 64 4.5.2位移厚度 65 4.5.3動量厚度 65 4.5.4紊流強度剖面 66 4.5.5雷諾剪應力 66 4.5.6渦流黏滯係數(Eddy viscosity) 67 4.5.7偏度係數 68 4.5.8峰度係數 68 4.5.9積分長度尺度 69 4.5.10相關係數 69 4.5.11互相關函數 69 第五章 結論與建議 124 參考文獻: 126 附錄A: 129 附錄B: 138

    1. Boldes, U., Colman, J. and Maranon Di Leo J. (2001) Field study of the flow behind single and double row herbaceous windbreaks. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp. 665–687
    2. Brunet, Y. , Finnigan, J.J. and Raupach M.R. (1993) A wind tunnel study of air flow in waving wheat : single-point velocity statistics, Boundary-Layer Meteorol, Vol.81, pp. 95-132
    3. Chu, C.R., Parlange, M.B., Katul, G.G. and Albertson, J.D. (1996) Probability density functions of turbulent velocity and temperature in the atmospheric surface layer, Water Resources Research, Vol. 32, No. 6, pp. 1681-1688
    4. Cionco, R.M. (1985) On modeling canopy flow coupled to th surface boundary layer. 17th Conference Agricultural and Forest Meteorology and 7th Conference Biometeorology and Aerobiology, pp. 116-119
    5. Coppin, P.A., Raupach, M.R. Legg, B.J. (1986) Experiments on scalar dispersion within a source. Boundary-Layer Meteorol, Vol. 35, pp. 167-191
    6. Dumbauld, R.K., Cionco, R.M. (1985) A method for characterizing turbulence and wind speed profiles within and above vegetative canopies. 17th Conference Agricultural and Forest Meteorology and 7th Conference Biometeorology and Aerobiology, pp. 120-123
    7. Finnigan, J. (2000) Turbulence in plant canopies. Annual Review Fluid Mech. Vol. 32, pp. 519-571
    8. Finnigan, J.J.,and Shaw, R.H. (2000) A wind-tunnel study in wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol, Vol. 96, pp. 211-255
    9. Finnigan, J.J. (1979) Turbulence in waving wheat II .Structure of momentum transfer. Boundary-Layer Meteorol, Vol.16, pp. 213-236
    10. Gardiner, B.A. (1994) Wind and windforces in a plantation spruce forest. Boundary-Layer Meteorol, Vol.67, pp. 161-186
    11. Ghisalberti, M., and Nepf, H.M. (2002) Mixing layers and coherent structures in vegetated aquatic flow. J. Geophys. Research, Vol. 107, No.C2, pp. 1-11.
    12. Irvine, M.R., Gardiner, B. A. and Hill, M.K.(1997)The evolution of turbulence across a forest edge. Boundary-Layer Meteorol, Vol.84, pp. 467-496
    13. Kim, D.S., Cho, G.H. and White, B.R. (2000) A wind-tunnel study of atmospheric boundary-layer flow over vegetated surfaces to suppress PM10 emission on owens (dry) lake, Boundary-Layer Meteorol. Vol.97, pp. 309-329
    14. Katul, G.G., Parlange, M.B. and Chu, C.R. (1994) Intermittency, local isotropy and non-Gaussian statistics in atmospheric surface layer turbulence, Physics of Fluids, Vol.6, No.7, pp. 2480-2492
    15. Katul, G.G. and Chu, C.R. (1998) A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary layer, Boundary-Layer Meteorology, Vol.86, No.2, pp. 279-312
    16. Lalic, B., Mihailovic, D.T. Rajkovic, B., Arsenic, I.D. and Radlovic, D. (2003) Wind profile within the forest canopy and in the transition layer above it. Environmental Modeling & Software, Vol. 18, pp. 943–950
    17. Massman, W. (1987) A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorology, Vol. 40, pp. 179–197.
    18. Mihailovic, D.T., Lalic, B. Rajkovic, B. and Arsenic, I. (1999) A roughness sublayer wind profile above non-uniform surface. Boundary-Layer Meteorology, Vol. 93, No.3, pp. 425–451.
    19. Novak, M.D., Warland J.S., Orchaansky, A.L., Ketler, R., Green, R. (2000) Wind tunnel and field measurements of turbulent flow in forests. Part I :Uniformly thinned stands. Boundary-Layer Meteorol, Vol. 95, pp. 457-495
    20. Peterka, J.A. and Cermak, J.E. (1974) Simulation of atmospheric flows in short wind tunnel test sections, Report for Center of Building Technology, CER73-74JAP-JEC32, Fluid Dynamics anf Diffusion Laboratory, Colorado State University, Fort Collins, Colo.
    21. Richardson, G.M. and Richards, P.J. (1995) Full-scale measurement of the effect of a porous windbreak on wind spectra. J. of Wind Engineering and Industrial Aerodynamics. Vol.54/55, pp. 611-619
    22. Raupach, M.R., Coppin, P.A., and Legg, B.J. (1986) Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Boundary-Layer Meteorol, Vol. 35, pp. 21-52
    23. Raupach, M.R., Antonia, R. A., and Rajagopalan, S. (1991) Rough-wall turbulent boundary layers. Applied Mechanics Review, Vol. 44, pp. 1-25
    24. Raupach, M.R. (1992) Drag and dragpartition on rough surfaces. Boundary-Layer meteorol, Vol. 60, pp. 375-385
    25. Shaw, R.H., Brunet, Y., Finnigan, J.J., and Raupach, M.R. (1995) A wind tunnel study of air flow in waving wheat: Two-point velocity statistics. Boundary-Layer Meteorol, Vol. 76, pp. 349-376
    26. Shaw, R.H., Tavanger, J. and Ward, D.P. (1983) Structure of the Reynolds stress in canopy layer. J. Clim. Applied Meteorol, Vol.22, pp. 1922-1931
    27. Schwartz, R.C., Fryrear, D.W., Harris, B.L., Bilbro, J.D. and Juo, A.S.R. (1995) Mean flow and shear stress distributions as influenced by vegetative windbreak structure. Agricultural and Forest Meteorology. Vol.75, pp. 1-22
    28. Simiu, E. and Scanlan, R.H. (1996) Wind Effect on Structures, 3rd edition, Johns Wiley and Sons, Inc.
    29. White, B. and Nepf, H.M. (2003) Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. Vol. 487, pp. 43-79
    30. 朱佳仁 (2003) 環境流體力學, 科技圖書出版公司印行

    QR CODE
    :::