跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊宗育
Tsung-Yu Yang
論文名稱: 微波/毫米波頻段寬頻與低損耗金氧半導體平衡至不平衡轉換器之研製及其應用
Microwave / Millimeter-Wave Broadband and Low-loss CMOS Balun Design and Applications
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 英文
論文頁數: 139
中文關鍵詞: 低損耗金氧半導體平衡至不平衡轉換器寬頻微波/毫米波
外文關鍵詞: Microwave / Millimeter-Wave, Broadband, Low-loss, CMOS, Balun
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究方向是著重於發展標準金氧半導體製程設計微波與毫米波段之寬頻與低損
    耗平衡不平衡轉換器及其在頻率轉換器之應用。在本論文中,利用對稱與非對稱架構技巧
    設計了三種多層式平衡不平衡轉換器,此改良多層式非對稱平衡不平衡轉換器可用耦合線
    之等效參數與其對應之阻抗值完成初步的合成設計,並可快速的建構一高特性馬遜平衡不
    平衡轉換器。所提出的解析步驟與設計方法可借由理論分析與實作電路做相互驗證並應用
    於平衡不平衡轉換器。此架構有別於一般傳統平面及螺旋堆疊耦合方式,本論文所發展之
    曲折堆疊耦合馬遜平衡不平衡轉換器更具有寬頻及低介入損耗等特性。
    所提出之平衡不平衡轉換器晶片面積均小於 0.06 平方毫米。其中非對稱式平衡不平
    衡轉換器可達到 120 % 頻寬,在 16.5 到 67 GHz 的頻段中,其介入損耗維持在 7 dB 以
    內。我們也利用三個不同的平衡不平衡轉換器應用於五個頻率轉換器,皆使用商用 0.18 微
    米金氧半導體製程實現。兩個寬頻的被動式單平衡混頻器達成 14.5 dB和 15 dB以下的轉
    換損耗,在 16 到 46 GHz 和 15 到 60 GHz 的頻段中,晶片面積均小於 0.24 平方毫
    米。利用一個縮小率為 80 %的微小化平衡不平衡轉換器達成 17 GHz 被動式單平衡式混
    頻器,達成 6.8 dB以下的轉換損耗,晶片面積小於 0.24 平方毫米。被動式雙平衡混頻器
    與倍頻器可達成 15 dB和 15.5 dB以下的轉換損耗,在 25 到 56 GHz 和 25 到 75 GHz
    的頻段中,晶片面積小於 0.34 與 0.2 平方毫米。另外,一個寬頻的主動式單端混頻器達
    成 0 dB以上的轉換增益,只需要 20 mW 以內的直流功率,在 7 到 65 GHz 的頻段中。
    一個本地振盪倍頻器達成 28 GHz 被動式單端混頻器,達成 11 dB以下的轉換損耗。


    The purpose of this dissertation is to develop broadband and low-loss Marchand baluns in
    microwave and millimeter-wave frequencies and their applications in standard CMOS-based
    technology. Three multilayer baluns using symmetric and asymmetric techniques are
    demonstrated in this dissertation. The equivalent parameters of the coupled-line and their
    impedance levels are used to synthesis the modified asymmetric broadside coupled balun design
    up to 65 GHz. The design procedure for the balun is verified by practical implementation. The
    measured results are well agreed with the theoretical analysis. Compare with the conventional
    planar and spiral stack Marchand baluns; the proposed meandering multilayer coupled Marchand
    balun demonstrates the better bandwidth and insertion loss performance.
    These balun chip sizes are all in 0.06 mm2. An asymmetric balun achieves a bandwidth of
    120 % with an insertion loss of 7 dB from 16.5 to 67 GHz. Five frequency-conversion circuits
    are further proposed and implemented in commercial TSMC 0.18-μm CMOS processes. These
    mixers and doubler adopting a non uniplanar balun feature a wide bandwidth performance with
    very compact size. Two broadband passive single-balanced mixers present a conversion loss
    better than 14.5 and 15 dB from 16 to 46 GHz and 15 to 60 GHz, the chip sizes are in 0.24 mm2.
    A 17 GHz passive single-balanced mixer with a miniaturized balun to reduce the chip area by 80
    % and yields a conversion loss of better than 6.8 dB with a chip size of 0.24 mm2. Two passive
    double-balanced mixer and frequency doubler perform a conversion loss better than 15 and 15.5
    dB from 25 to 56 GHz and 25 to 75 GHz, the chip sizes are 0.34 and 0.24 mm2, respectively.
    Furthermore, a wideband active single-ended mixer demonstrates a conversion gain better than 0
    dB under a dc power dissipation of 20 mW from 7 to 65 GHz. The chip size is 0.15 mm2. A
    8
    passive 28 GHz drain-pumped passive mixer with an LO frequency doubler in sub-harmonic
    operation and achieves the conversion loss of better than 11 dB.

    Chapter 1 Introduction...............................................................................................................1 1.1 Motivation.............................................................................................................................1 1.2 Literature Survey...................................................................................................................2 1.3 Contributions.......................................................................................................................7 1.4 Dissertation Organization….................................................................................................9 Chapter 2 Introduction of Integrated Baluns…………………………..……..……...............11 2.1 Introduction...........................................................................................................................11 2.2 Active Baluns.........................................................................................................................13 2.2.1 Single-transistor Phase Splitters.....................................................................................13 2.2.2 Differential Pair Baluns………......................................................................................16 2.3 Passive Baluns…...................................................................................................................18 2.3.1 Rat-race Baluns ..............................................................................................................18 2.3.2 Lumped-element Baluns.................................................................................................19 2.3.3 Power Splitter Based Baluns..........................................................................................20 2.3.4 Planar Transformer Baluns............................................................................................21 2.3.5 Uniplanar CPW-to-CPS Baluns......................................................................................21 2.3.6 Coupled Line Baluns......................................................................................................22 2.3.7 Marchand Baluns .........................................................................................................23 Chapter 3 Analysis of Broadside Coupled CMOS Marchand Balun………..………...........26 3.1 Reference Transmission Line...............................................................................................26 3.2 Analysis of Balun Impedance and 3-D CMOS Structure..................................................28 3.3 Design and Verification of the Broadside Coupled Balun................................................34 3.4 Summary................................................................................................................................40 Chapter 4 Baluns Design and Implementation……………………..…......……….……..…..41 4.1 Symmetric Broadside Coupled Balun.................................................................................41 4.2 Asymmetric Broadside Coupled Balun...............................................................................43 4.3 Asymmetric Broadside Coupled Dual Balun.....................................................................46 4.4 Summary..............................................................................................................................50 Chapter 5 Millimeter-Wave CMOS Frequency Converters………………………...............52 5.1 A 28 GHz Drain-pumped Sub-harmonic Mixer with LO Doubler...................................52 5.2 A 7-65 GHz Mixer with Thin-film Lange Coupler and Darlington Cell………...……....56 5.3 A 17 GHz Reduce-sized Single Balanced Mixer ..........................................................61 5.4 A 16-46 Single Balanced Mixer Using Symmetric Multilayer Baluns.............................65 5.5 A 15-60 GHz Single Balanced Mixer Using Asymmetric Multilayer Baluns.................68 5.6 A 25-56 GHz Double Balanced Mixer Using Asymmetric Multilayer Baluns …............71 5.7 A 25-75 GHz Double Balanced Doubler Using Asymmetric Multilayer Baluns…….....74 5.8 Summary……………………................................................................................................80 Chapter 6 Conclusions.................................................................................................................82 Appendix ................................................................................................................84 References................................................................................................................................104 Publication List..........................................................................................................................120

    [1] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol.
    39, no. 2, pp. 368-373, Feb. 2004.
    [2] S. Reynolds, B. Floyd, U. Pfeiffer, and T. Zwick, “60GHz transceiver circuits in SiGe
    bipolar technology,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, vol. 47, pp. 442-443.
    [3] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, ”Millimeterwave CMOS
    design,” IEEE J. Solid-State Circuits, vol. 40, Issue 1,pp. 144 – 155, Jan. 2005.
    [4] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit
    design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
    [5] T. O. Dickson, M. A. LaCroix, S. Boret, D. Gloria, R. Beekens, and S. P. Voinigescu,
    “30-100 GHz inductors and transformers for millimeterwave (Bi)CMOS integrated
    circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 123–134, Jan. 2005.
    [6] H. Y. Chang, P.S. Wu, T.W. Huang, H. Wang, C.L. Chang, and J.G.J. Chern, “Design
    and analysis of CMOS broad-band compact highlinearity modulators for gigabit
    microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol.54,
    Issue 1, pp.20 – 30, Jan. 2006.
    [7] H. K. Chiou, and H. H. Lin, “A miniature MMIC double doubly balanced mixer using
    lumped dual balun for high dynamic receiver application, ” IEEE Microwave and Guided
    Wave Letters, vol. 7, No. 8, pp. 227-8, Aug. 1997.
    [8] H. K. Chiou, H. H. Lin, and C. Y. Chang, “Lumped-Element Compensated
    High/Low-pass Balun Design for MMIC Double-Balanced Mixer,” IEEE Microwave
    Guided Wave lett., vol. 7, no. 8, pp. 248-250, Aug. 1997.
    [9] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped
    122
    resistive mixer MMIC using a lumped-element high-pass/band-pass balun,” IEEE
    Microw. Wireless Compon. Lett., vol.15, Issue: 2, pp. 62- 64, Feb. 2005.
    [10] D. Kuylenstierna and P. Linnér, “Design of broad-band lumped-element baluns with
    inherent impedance transformation,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12,
    pp. 2739-2745, Dec. 2004.
    [11] J. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State
    Circuits, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
    [12] C. Nguyen and D. Smith, “Novel miniaturised wideband baluns for MIC and MMIC
    applications,” Electron. Lett., vol. 29, no. 12, pp. 1060-1061, June 1993.
    [13] C.C. Meng, T.H. Wu, and M.C. Lin, “Compact 5.2-GHz GaInP/GaAs HBT Gilbert
    upconverter using lumped rat-race hybrid and current combiner,” IEEE
    Microw.Wireless Compon. Lett., vol. 15, no. 10, Oct 2005.
    [14] P.S. Wu, C.H. Wang, T.W. Huang, and H. Wang, “Compact and broadband
    millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microw.
    Theory Tech., vol. 53, no. 10, pp. 3106–3114, Oct. 2005.
    [15] H. K. Chiou, W. R. Lian, and T. Y. Yang, “A Miniature Q-Band Balanced
    Sub-harmonically Pumped Image Rejection Mixer,” IEEE Microw.Wireless Compon.
    Lett., vol. 17, issue 6, pp. 463 – 465, June 2007
    [16] T. Y. Yang, W.R. Lian, C. C. Yang, and H. K. Chiou, “A Compact V Band Star Mixer
    Using Compensated Overlay Capacitors in Dual Baluns,” IEEE Microw.Wireless
    Compon. Lett., vol.17, issue 7, pp. 537-539, July 2007.
    [17] B. J. Minnis and M. Healy, “New broadband balun structures for monolithic microwave
    integrated circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1991, pp. 425-428.
    123
    [18] E. Valletta, J. Van Beek, A. Den Defier, N. hlsford, H. F. F. Jos, L.C.N. de Vreede, L. K.
    Nanver, and J. N. Burghartz, “Design and characterization of integrated passive
    elements on high ohmic silicon, ” in IEEE MTT-S Int. Microwave Symp. Dig., 8-13 June,
    2003, vol.2, pp. 1235-1238.
    [19] H. Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground
    for wide operation using 0.18-μm CMOS technology,” Electron. Lett., vol.43, no. 5, 1
    Jan. 2007.
    [20] P. S. Wu, H.Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New Miniature
    15-20-GHz Continuous-Phase/ Amplitude Control MMICs Using 0.18-μm CMOS
    technology,” IEEE Trans. Microw. Theory Tech., vol.54, no.1, pp.10-19, Jan. 2006.
    [21] W. Z. Chen, W. H. Chen, and K. C. Hsu, “Three-Dimensional Fully Symmetric
    Inductors, Transformer, and Balun in CMOS Technology,” IEEE Trans. on Circuits and
    Systems I, vol.54, issue 7, pp.1413 -1423, July 2007.
    [22] Lai Chee-Hong Ivan, Inui Chiaki, and Fujishima Minoru, “CMOS on-chip stacked
    Marchand balun for millimeter-wave application,” IEICE Electronics Express, vol. 4,
    No. 2, pp. 48-53, 2007.
    [23] J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz Millimeter-wave CMOS
    Marchand Balun,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 3-5
    June 2007, pp. 445-448.
    [24] S. Pruvost, I. Telliez, F. Danneville, G. Dambrine, N. Rolland, and F. Pourchon, “A 40
    Ghz single-ended down-conversion mixer in 0.13-μm SiGeC BiCMOS HBT,” IEEE
    Microw.Wireless Compon. Lett., vol. 15, no. 8, pp. 496–498, Aug. 2005.
    [25] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. v. Buren, M. L. Schmatz, C. Menolfi,
    124
    T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer
    MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech.,
    vol. 52, no. 5, pp. 1382–1391, May 2004.
    [26] F. Ellinger, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with
    high linearity for WLAN,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp.
    2559–25658, Aug. 2005.
    [27] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz
    single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless
    Compon. Lett., vol. 16, no. 1, pp. 25–27, 2006.
    [28] Ivan C. H. Lai, Yuki Kambayashi, and Minoru Fujishima, “60-GHz CMOS
    Down-Conversion Mixer with Slow-Wave Matching Transmission Lines,” in Proc.
    IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2006, pp. 195–198.
    [29] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz
    down-converting CMOS single-gate mixer,” in Proc. IEEE Radio Frequency Integrated
    Circuits (RFIC) Symp., Jun. 2005, pp. 163–166.
    [30] T. N. Trinh, W. S. Wong, D. Li, and J. R. Kessler, “Ion implanted W-band monolithic
    balanced mixers for broadband applications,” Microwave and Millimeter-Wave
    Monolithic Circuits, vol. 87, pp. 89-92, June 1987.
    [31] K. Kamozaki, N. Kurita, T. Tanimoto, H. Ohta, T. Nakamura, and Hiroshi Kondoh,
    “50-100 GHz Octave Band MMIC Mixers,” IEEE Radio Frequency Integrated Circuit
    (RFIC) Symp. Dig., June 1997, pp. 95-98.
    [32] A. R. Barnes, P. Munday, and M. T. Moore, “A comparison of W-band monolithic
    resistive mixer architectures,” IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp.
    125
    1867-1870.
    [33] Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60
    GHz millimeter-wave MMIC chipset for broadband wireless access system frontend,”
    IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp. 1721-1724.
    [34] M. Kimishima, T. Ataka, and H. Okabe, “A family of Q, V and W-band monolithic
    resistive mixers,” IEEE MTT-S Int. Microwave Symp. Dig., June 2001, pp. 115-118.
    [35] P. S. Wu, C. S. Lin, T. W. Huang, H. Wang, “A millimeter-wave ultra-compact
    broadband diode mixer using modified Marchand balun,” Gallium Arsenide and Other
    Semiconductor Application Symposium, 3-4 Oct. 2005, pp. 349-352.
    [36] C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, and C. H. Chang, “A
    Ku/K-band PHEMT Diode Single-balanced Mixer,” Solid-State and Integrated Circuit
    Technology, Oct. 2006, pp.884-886.
    [37] F. Ellinger, “26–34 Ghz CMOS mixer,” Electron. Lett., vol. 40, no. 22, 28, pp.
    1417–1419, Oct. 2004.
    [38] A. Verma, L. Gao, K. K. O, and J. Lin, “A K-band down-conversion mixer with
    1.4-GHz bandwidth in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon.
    Lett., vol. 15, no. 8, pp. 493–495, Aug. 2005.
    [39] C. S. Lin, P. S.Wu, H. Y. Chang, and H. Wang, “A 9–50-GHz Gilbertcell
    down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless
    Compon. Lett., vol. 16, no. 5, pp. 293–295, May 2006.
    [40] M. D. Tsai and H. Wang, “A 0.3–25-GHz ultra-wideband mixer using commercial
    0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp.
    522–524, Nov. 2004.
    126
    [41] J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, John G. J. Chern, W. C. Huang, “A 25-75
    GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” IEEE Microw.
    Wireless Compon. Lett., vol. 17, no. 4, pp. 247-249, April 2007.
    [42] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband
    millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56,
    no. 4, pp. 793–802, April 2008.
    [43] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using
    gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no.
    7, pp. 2435–2440, Jul. 2005.
    [44] C. Y. Chang, C. K. Liao, and D. C. Niu, “A 1.5 to 37 GHz ultra-broadband MMIC
    Mouw’s star mixer,” in Proc. Eur. Microw. Conf., Oct. 4–6, 2005, vol. 2, pp. 4–4.
    [45] S. A. Maas and K. W. Chang, “A broad-band planar, doubly balanced monolithic
    ka-band diode mixers,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp.
    2330–2335, Dec. 1993.
    [46] K. L. Deng and H. Wang, “A miniature broad-band pHEMT MMIC balanced distributed
    doubler,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1257–1261, Apr. 2003.
    [47] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,”
    in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 443–446.
    [48] C. C. Weng, Z. M. Tsai, and H. Wang, “A K-band miniature, broadband, high output
    power HBT MMIC balanced doubler with integrated balun,” in IEEE Eur. Microw.
    Conf. Dig., Oct. 4–6, 2005, vol. 3, pp. 1–3.
    [49] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang,
    “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC
    design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
    127
    [50] B. Piemas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband
    and miniaturized V-band PHEMT frequency doubler,” IEEE Microw. GuidedWave Lett.,
    vol. 10, no. 7, pp. 276–278, Jul. 2000.
    [51] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband
    V-band balanced frequency doubler for highly integrated 3-D MMIC,” in IEEE MTT-S
    Int. Microwave Symp. Dig., Jun. 2002, vol. 1, pp. 351–354.
    [52] K. Nishikawa, T. Enoki, S. Sugitani, I. Toyoda, and K. Tsunekawa, “Low-voltage and
    broadband V-band InP HEMT frequency doubler MMIC,” in IEEE MTT-S Int.
    Microwave Symp. Dig., Jun. 12–17, 2005, pp. 45–48.
    [53] F. Ellinger and H. Jackel, “Ultracompact SOI CMOS frequency doubler for low power
    applications at 26.5–28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 2,
    pp. 53–55, Feb. 2004.
    [54] M. Ferndahl, B. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm
    CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2004, vol. 1, pp. 179–182.
    [55] M. Kaixue, M. Jianguo, J. Lin, O. Benghwee, S.Y. Kiat, and A. D. Manh, “800 MHz-2.5
    GHz miniaturized multi-layer symmetrical stacked baluns for silicon based RF ICs, ”
    IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 283–286.
    [56] Y. J. Yoon, Lu Yicheng, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral
    transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20,
    issue 4, pp. 182–184, 1999.
    [57] E. Valletta, J. Van Beek, A. Den Dekker, N. Pulsford, H.F.F. Jos, L.C.N. de Vreede,
    L.K. Nanver, and J.N. Burghartz, “Design andcharacterization of integrated passive
    128
    elements on high ohmic silicon,” IEEE MTT-S Int. Microw. Symp. Dig., 2003, vol. 2, pp.
    1235–1238.
    [58] H.Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground
    for wide operation using 0.18 μm CMOS technology,” Electron. Lett., vol. 43, pp.
    51–52, 2007.
    [59] P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New miniature
    15–20-GHz continuous-phase/amplitude control MMICs using 0.18 μm CMOS
    technology,” IEEE Trans. Microw. Theory Tech., vol. 54, issue 1, pp. 10–19, 2006.
    [60] W. Z. Chen, and W. H. Chen, “Symmetric 3D passive components for RF ICs
    application,” IEEE MTT-S Int. Microw. Symp. Dig., 2003, vol. 54, pp. A85–A88.
    [61] H. Koizumi, S. Nagata, K. Tateoka, K. Kanazawa, and D. Ueda, “A GaAs single
    balanced mixer MMIC with built-in active balun for personal communication systems,”
    in Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1995, pp. 77–80.
    [62] M. Goldfarb, J. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable
    gain using enhancement-mode FETS suitable for 3 V wireless applications,” in
    Microwave and Millimeter-Wave Monolithic Circuits Symposium , May 1994, vol. I, pp.
    99–102.
    [63] M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd
    European Microwave Conference, 2003, pp. 495–498.
    [64] C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an Original K-Band
    Active Balun with Improved Broadband Balanced Bheavior,” IEEE Microwave and
    Wireless Comp. Letters, vol. 15, No 4, pp.280-282, April 2005.
    [65] H. Ma, S. J. Fang, L. Fujiang, and H. Nakamura, “Novel active differential phase
    129
    splitters in RFIC for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 46,
    no. 12, pp. 2597–2603, Dec 1998.
    [66] S. K. Altes, T. H. Chen, and L. J. Ragonese, “Monolithic RC all-pass networks with
    constant-phase-difference outputs,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 12,
    pp. 1533–1537, Dec 1986.
    [67] S. March, “A wide band stripline hybrid ring,” IEEE Trans. Microw. Theory Tech., vol.
    MTT-16, pp. 361, June 1968.
    [68] C. H. Ho, L. Fan, and K. Chang, “Broad-band uniplanar hybrid-ring and branch-line
    couplers,” IEEE Trans. Microw. Theory Tech., vol. 41, pp. 2116-2125, Dec. 1993.
    [69] H. K. Chiou, Y. R. Juang, and H. H. Lin, “Miniature MMIC star double balanced mixer
    using lumped dual balun,” Electron. Lett., vol. 33, no. 6, pp. 503-505, Mar. 1997.
    [70] H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using
    lumped dual balun for high dynamic receiver application,” IEEE Microw. Wireless
    Compon. Lett., vol. 7, pp. 227, Aug. 1997.
    [71] H. K. Chiou, H. H. Lin, and C. Y. Chang, “Lumped-element compensated high/low-pass
    balun design for MMIC double-balanced mixer,” IEEE Microwave Guided Wave Lett.,
    vol. 7, pp. 248–250, Aug. 1997.
    [72] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State
    Circuits, vol. 35, no. 9, pp. 1368–1381, Sept 2000.
    [73] A. Zolfghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS
    technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620–628, Apr 2001.
    [74] J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1-5.8-GHz image-reject receiver
    with wide dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1917–1926,
    130
    Dec 2000.
    [75] A. Italia, L. La Paglia, A. Scuderi, F. Carrara, E. Ragonese, and G. Palmisano, “A
    silicon bipolar trasmitter front-end for 802.11a and HIPERLAN2 wireless LANs,” IEEE
    J. Solid-state Circuits, vol. 40, no. 7, pp. 1451–1459, Jul 2005.
    [76] H. K. Chiou, C. Y. Chang, and H. H. Lin, “Balun design for uniplanar broad band
    double balanced mixer,” Electron. Lett., vol. 31, pp. 211–212, Nov. 1995.
    [77] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood,
    MA: Artech House, 1999, pp. 399–403.
    [78] S. A. Maas, The RF and Microwave Circuit Design Cookbook. Norwood, MA: Artech
    House, 1998, pp. 109–114.
    [79] K. S. Ang, Y. C. Leong, and C. H. Lee, “Multisection impedance-transforming
    coupled-line baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 536-541, Feb.
    2003.
    [80] N. Marchand, “Transmission-line conversion transformers,” Electronics, vol. 17, no. 12,
    pp. 142–145, 1944.
    [81] A. M. Pavio and A. Kikel, “A monolithic or hybrid broadband compensated balun,” in
    IEEE MTT-S Int. Microwave Symp. Dig., 1990, pp. 483–486.
    [82] Y. J. Yoon, Y. C. Lu, Robert C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P.
    Kossives, “Design and characterization of multilayer spiral transmission- line baluns,”
    IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1841–1847, Sept. 1999.
    [83] K. Nishikawa, I. Toyoda, and T. Tokumitsu, “Compact and broad-band
    three-dimensional MMIC balun,” IEEE Trans. Microw. Theory Tech., vol. 47, no. I, pp.
    96-98, Jan. 1999.
    131
    [84] ETSI HIPERLAN/2 Standard [Online]. Available: http://portal.etsi.org/
    bran/kta/Hiperlan/hiperlan2.asp
    [85] B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits Devices Mag.,
    vol. 12, pp. 12-25, Dec. 1996.
    [86] T. H. Lee, “5-GHz CMOS wireless LANs,” IEEE Trans. Microw. Theory Tech., vol. 50,
    no. 1, pp. 268-280, Jan. 2002.
    [87] V. Aparin and L. E. Larson, “Analysis and reduction of cross-modulation distortion in
    CDMA receivers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1591-1602,
    May 2003.
    [88] Y. Ding and R. Harjani, “A +18 dBm IIP3 LNA in 0.35 μm CMOS,” IEEE Int.
    Solid-State Circuits Conf., 2001, pp. 162-163.
    [89] V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low-frequency
    low-impedance input termination,” Europ. Solid-State Circ. Conf., Sep. 2003, pp.
    137-140.
    [90] B. Kim, J.S. Ko, and K. Lee, “A new linearization technique for MOSFET RF amplifier
    using multiple gated transistors,” IEEE Microw. Guided Wave Lett., vol. 10, no. 9, pp.
    371-373, Sep. 2000.
    [91] B. Kim, J. Ko, and K. Lee, “Highly linear CMOS RF MMIC amplifier using multiple
    gated transistors and its Volterra series analysis,” in IEEE MTT-S Int. Microwave Symp.
    Dig., 2001, pp. 515-518.
    [92] T. W. Kim, B. Kim, I. Nam, B. Ko, and K. Lee, “A low-power highly linear cascoded
    multiple-gated transistor CMOS FR amplifier with 10 dB IP3 improvement,” IEEE
    Microwave and Guided Wave Letters, vol. 13, no. 6, pp. 205-207, June 2003.
    132
    [93] V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNA’s via optimum
    gate biasing,” IEEE Int. Circuits Systems Symp., May 2004, vol. 4, pp. 748-751.
    [94] T. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET
    transconductance linearization by multiple gated transistors,” IEEE J. Solid-State
    Circuits, vol. 39, no. 1, pp. 223-229, Jan. 2004.
    [95] I. Kwon, and K. Lee, “An Integrated Low Power Highly Linear 2.4-GHz CMOS
    Receiver Front-End Based on Current Amplification and Mixing,” IEEE Microw.
    Wireless Compon. Lett., vol. 15, no. 1, pp. 36-38, Jan. 2005.
    [96] D. R. Webster, D. G. Haigh, J. B. Scott, and A. E. Parker, “Derivative superposition-A
    linearization technique for ultra broadband systems,” IEE Wideband Circuits, Modeling,
    Technology Colloq., pp. 311-314, May 1996.
    [97] V. Aparin, and L. E. Larson, “Modified derivative superposition method for linearizing
    FET low-noise amplifiers,” IEEE Radio Frequency Integrated Circuits Symposium, 6-8
    June 2004, pp.105-108.
    [98] V. Aparin, and L. E. Larson, “Modified derivative superposition method for linearizing
    FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp.
    571-581, Feb. 2005.
    [99] T. S. Kim, and B. S. Kim, “Post-Linearization of Cascode CMOS Low Noise Amplifier
    Using Folded PMOS IMD Sinker,” IEEE Microw. Wireless Compon. Lett.,vol. 16, no. 4,
    April 2006.
    [100] K. Namsoo, V. Aparin, K. Barnett, and C. Persico, “A cellular-band CDMA 0.25-μm
    CMOS LNA linearized using active post-distortion,” IEEE J. Solid-State Circuits, vol.
    41, issue 7, pp.1530-1534, July 2006.
    133
    [101] V. Aparin and P. Katzin, “Active GaAs MMIc band-pass filters with automatic
    frequency tuning and insertion loss control,” IEEE J. Solid-State Circuits, vol. 30, pp.
    1068-1073, Oct. 1995.
    [102] P. Katzin, B. Bedard, and Y. Ayasli, “Narrow-band MMIc filters with automatic tuning
    and Q-factor control,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993.
    [103] J. A. Macedo, and M. A. Copeland, “A 1.9-GHz silicon receiver with monolithic image
    filtering,” IEEE J. Solid-State Circuits, vol.33, issue 3, pp.378-386, March 1998.
    [104] T. K. Nguyen, S. K. Han, and S. G. Lee, “Ultra-low-power 2.4 GHz IR low-noise
    amplifier,” Electron. Lett., vol. 41, issue 15, pp.842-843, July 2005.
    [105] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G. J. Ihm, and S. G. Lee, “IR CMOS
    low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory
    Tech., vol. 53, issue 2, pp.538-547, Feb 2005.
    [106] J. Gil, K. Han, and H. Shin, “13 GHz 4.67 dB NF CMOS low-noise amplifier,”
    Electron. Lett., vol. 39, issue 14, pp. 1056-1058, 10 July 2003.
    [107] K. L. Deng, M. D. Tsai, C. S. Lin, K. Y. Lin, H. Wang, S.H. Wang, W.Y. Lien, and
    G.J. Chem, “A Ku-band CMOS low-noise amplifier,” IEEE International
    Radio-Frequency Integration Technology, Nov. 2005, pp.183-186.
    [108] W. L. Chen, S. F. Chang, G. W. Huang,Y. S. Jean, and T. H. Yeh, “A Ku-Band
    Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked
    Common-Gate Topology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.10,
    pp.718-720, Oct. 2007.
    134
    [109] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-Band low-noise
    amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett.,
    vol. 14, no. 3, pp. 106-108, Mar. 2004.
    [110] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS tuned
    amplifier, ” IEEE Trans. Microw. Theory Tech., vol. 50, no. 50, pp. 2193-2195, Sep.
    2002.
    [111] S. C. Shin, M. Tsai, R. Liu, K. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise
    amplifier using 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett.,
    vol. 15, no. 7, pp. 448-450, July 2005.
    [112] A. Masud, H. Zirath, M. Ferndahl, and H.O. Vickes, “90-nm CMOS MMIC amplifier,”
    RF Integrated Circuits Dig., Jun. 2004, pp. 201-204.
    [113] H. L. Tu, T. Y. Yang, K.H. Liang, and H.K. Chiou, “A 30 GHz 10 dB Low Noise
    Amplifier Using Standard 0.18-μm CMOS Technology,” Microwave and Optical
    Technology Lett., vol. 49, no. 3, pp. 647-649, Mar. 2007.
    [114] H. Y. Liao, K. C. Liang, and H. K. Chiou, “A Compact and Low Power Consumption
    K-band Differential Low Noise Amplifier Design Using Transformer Feedback
    Technique,” IEEE Asia-Pacific Microwave Conference, Dec. 11-14 2007, pp. 571-574.
    [115] ITRS, http://public.itrs.net.
    [116] C. W. Kim, and S. G. Lee, “A 5.25-GHz image rejection RF front-End Receiver with
    Polyphase filters,” IEEE Microw. Wireless Compon. Lett., vol. 16, issue 5, pp.302-304,
    May 2006.
    [117] J. A. Macedo, and M. A. Copeland, “A 1.9-GHz silicon receiver with monolithic image
    filtering,” IEEE J. Solid-State Circuits, vol.33, issue 3, pp.378-386, March 1998.
    135
    [118] T. K. Nguyen, S. K. Han, and S. G. Lee, “Ultra-low-power 2.4 GHz IR low-noise
    amplifier,” Electron. Lett., vol. 41, issue 15, pp.842-843, 21 July 2005.
    [119] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G.J. Ihm, and S.G. Lee, “IR CMOS
    low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory
    Tech., vol. 53, issue 2, pp.538-547, Feb 2005.
    [120] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS Wireless LAN Receiver
    Front End,” IEEE J. Solid-state Circuits, vol. 35, no. 5, pp. 765-771, May 2000.
    [121] J. W. M Rogers, and C Plett, “A 5 GHz Radio Front-End with Automatically Q Tuned
    Notch Filter,” in IEEE Proc. Bipolur/BiCMOS Circuits and Technologv Meeting, pp.
    69-72, Oct. 2002.
    [122] M. A. Copeland, S. P. Voinigescu, D. Marchesan, P. Popescu, and M. C. Malerpard,
    “5-GHz SiGe HBT Monolithic Radio Transceiver with Tunable Filtering,” IEEE Trans.
    Microw. Theory and Tech., vol. 48, no. 2, pp. 170-180, Feb. 2000.
    [123] M. A. Margarit, D. Shih, P. J. Sullivan, and F. Ortega, “A 5-GHz BiCMOS RFIC
    Front-End for IEEE 802.11d HiperLNA Wireless LNA,” IEEE J. Solid-State Circuit,
    vol. 38, no. 7, pp. 1284-1287, July 2003.
    [124] J. R. Long, “A Low-Voltage 5.1-5.8 GHz Image-Reject Downconverter RF IC,” IEEE
    J. Solid-State Circuits, vol. 35, no. 9, pp. 1320-1328, Sep. 2000.
    [125] M. H. Koroglu, and P. E. Allen, “A 1.9GHz image-reject front-end with automatic
    tuning in a 0.15-μm CMOS technology”, ISSCC Digest of Technical Papers, Feb. 2003,
    pp. 264-265.
    [126] M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S.
    Mehta, K. Singh, S. Mendis, and B. A. Wooley, “A 5-GHz CMOS transceiver for
    136
    IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, no. 12,
    pp.1688-1694, Dec. 2002.
    [127] Rola A. Baki, and Mourad N. El-Gamal, “Robust Multi-GHz (7.4GHz) On-Chip Image
    Rejection in CMOS,” Custom Integrated Circuits Conference, 18-21 Sep. 2005,
    pp.341-344.
    [128] R. A. Baki, and N. El-Gamal, “A 1.5V multigigahertz CMOS tunable image reject
    notch filter,”, The 14th International Conference on Microelectronics, 11-13 Dec. 2002,
    pp.144-147.

    QR CODE
    :::