| 研究生: |
劉建忠 Chien-Chung Liu |
|---|---|
| 論文名稱: |
應用HHT方法在偵測建築結構樓層損傷程度之研究 Sensitivity of damage detection for steel structures using the HHT method |
| 指導教授: |
許文科
Wenko Hsu 蔣偉寧 Wei-Ling Chiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 敏感度 、有效勁度比 、損傷指標 、希爾伯特-黃轉換 、快速傅立葉轉換 |
| 外文關鍵詞: | sensitivity, effective stiffness, damage detection index, HHT, FFT |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在探討應用希爾伯特-黃轉換(HHT)和快速傅立葉轉換(FFT)法,偵測鋼結構建築受強地震作用造成損傷之敏感度分析。首先,分別建立皆為四跨之三層、五層及十層樓鋼結構有限元素模型,透過輸入四種不同類型之地震紀錄(日本311、集集921、El Centro與Kobe),進行非線性動力歷時反應分析,再擷取樓層加速度訊號建立HHT及FFT頻率反應曲線。最後藉由比較各頻譜間之頻寬比(RB),並結合桿件有效勁度比(RES)的變化,探討由HHT和FFT頻譜計算之RB指標對於偵測鋼結構模型地震損傷之敏感程度。
研究成果顯示:
1. 本研究建立之鋼結構模型皆出現一樓柱底先達降伏,進入非線性反應階段,造成斷面勁度折減及產生結構損傷。
2. 由三層、五層及十層樓模型利用HHT頻譜計算之RB指標分析結果得知,當一樓柱桿件之RES剩餘80%時,無論一樓或頂樓的RB即開始出現變化,並有隨RES持續折減而增大之趨勢,其中又以一樓處的RB變化量較為明顯。
3. 反觀經由FFT頻譜分析計算所得之RB,在RES=60%即結構受損嚴重狀態時,RB仍未產生變化。
4. 以HHT加速度反應頻譜為基礎之損傷指標RB,具有較採用FFT分析更為良好的偵測結構地震損傷敏感度。
This study aims to investigate the relationship between structural damage and sensitivity indices using the Hilbert-Huang transform (HHT) method. Two damage detection indices are proposed: the ratio of bandwidth (RB), and the ratio of effective stiffness (RES). The nonlinear four bays multiple degree of freedom models with various predominant frequencies are constructed using the SAP2000 program. Adjusted PGA earthquake data are used as the excitations. Next, the damage detection indices obtained using the HHT and the fast Fourier transform (FFT) method are evaluated based on the acceleration responses of the structures to earthquakes.
Simulation results indicate that, the column of the 1st floor is the first yielding position and the RB value is changed when the RES=85% in the three-story and five-story cases versus the RES=90% in the ten-story cases. Moreover, the RB value of the 1st floor changes more than those from the top floor. In addition, when the structural response is nonlinear (i.e., RES<100%), the RB and the RES curves indicate the incremental change in the HHT spectra. However, the same phenomenon can be found from FFT spectra only when the stiffness reduction is large enough. Therefore, the RB estimated from the smoothed HHT spectra is an effective and sensitive index for detecting structural damage.
【1】 Doebling, S.W, Farrar, C.R., and Prime, M.B., ”A summary review of vibration-based damage identification methods”,The Shock and Vibration Digest, Vol. 30, pp. 91-105, 1998.
【2】 D Rytter, A., “Vibration based inspection of civil engineering structures”, PhD dissertation Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993.
【3】 Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: I. Experiment,” Smart Materials and Structures, 7(5), pp. 704-719.
【4】 Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study,” Smart Materials and Structures, 7(5), pp.720-731.
【5】 Ghobarah, A., Abou-Elfath, H. and Biddah, A., 1999, “Response-based damage assessment of structures,” Earthquake Engineering and Structural Dynamics, 28, pp. 79-104.
【6】 Y. Lei, A. S. Kiremidjian, K. K. Nair, J. P. Lynch and K. H. Law, 2003, “Statistical Damage Detection Using Time Series Analysis on a Structural Health Monitoring Benchmark Problem,” Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA, USA, July, pp. 6-9.
【7】 Cooley, J. W. and Tukey, J. W., 1965, “An algorithm for the machine calculation of complex Fourier series, ” Mathematics of Computation, 19, pp. 297–301.
【8】 胡昌華,等「基於MATLAB 的系統分析與設計—小波分析」,西安電子科技大學出版社,中國大陸, 1999.
【9】 Cohen L., 1995, “Time–frequency analysis. 1st ed.,” NJ: Prentice-Hall.
【10】 Newland D. E. 1993, “An introduction to Random Vibrations, Spectral and Wavelet Analysis,” John Wiley & Sons, Inc., New York.
【11】 Yam, L. H., Yan, Y. J. and Jiang, J. S., 2003, “Vibration-based damage detection for composite structures using wavelet transform and neural network identification,” Composite Structures, 60, pp. 403-412.
【12】 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu H. H, 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995.
【13】 Huang, N. E., Shen, Z., and Long, S. R., 1999, “A new view of nonlinear water waves: The Hilbert spectrum,” Annual. Review of Fluid Mechanics, 31, pp. 417–457.
【14】 Yang, J. N., and Lei, Y., 2000a, “System identification of linear structures using Hilbert transform and empirical mode decomposition, ” Proc., 18th Int. Modal Analysis Conf.: A Conf. on Structural Dynamics, Society for Experimental Mech., Inc., Bethel, Conn., 1, pp. 213–219.
【15】 Anshuman Kunwar1, Ratneshwar Jha, Matthew Whelan and Kerop Janoyan3, 2011, “Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations,” STRUCTURAL CONTROL AND HEALTH MONITORING.
【16】 邱東茳,「應用HHT頻譜於鋼結構房屋建築地震損傷之研究」,博士論文,國立中央大學土木工程研究所博士論文,民國100年。
【17】 Wu Z. and Huang N. E., 2004, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Centre for Ocean-Land-Atmosphere Studies, Tech. Rep., No.173.
【18】 Su S. C., Huang N. E., and Wen K. L., 2008, “A new spectral representation of strong motion earthquake data: Hilbert spectral analysis of Taipower building station, 1994~2006,” Proc., 5th Int. Conf. on Urban Earthquake Engineering, Tokyo, Japan.
【19】 黃志偉,2009,「應用改良式HHT與模糊迴歸法於橋梁結構安全檢測」,私立逢甲大學土木暨水利工程研究所博士論文,台中市。
【20】 劉德俞,「應用希爾伯特黃轉換方法改進結構 系統識別方法於橋梁振動訊號之研究」,博士論文,國立中央大學土木工程研究所博士論文,民國100年。
【21】 Haar, Alfred, 1910, “Zur Theorie der orthogonalen Funktionensysteme (German),” Mathematische Annalen 69(3), pp.331–371.
【22】 Huang N.E," The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis ", NASA.(manuscript), 1996.
【23】 Copson, E. T., 1967, “Asymptotic Expansions,” Cambridge University Press.
【24】 Pandey, J. N., 1996, “The Hilbert transform of Schwartz distributions and applications,” New York : John Wiley.
【25】 Gabor, D., 1946, “Theory of communication,” Proc. IEE, 93, pp. 429-457.
【26】 Tichmarsh, E. C., 1948, “Introduction to the theory of Fourier Integrals,” Oxford University Press.
【27】 Newland, D. E., 1993, “An introduction to Random Vibrations, Spectral & Wavelet Analysis,” John Wiley & Sons, Inc., New York.
【28】 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu H. H, 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995.
【29】 Dazin, P. G., 1992, “Nonlinear Systems,” Cambridge University Press, Cambridge.
【30】 Long, S. R., Huang, N. E., Lung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E. and Yuan, Y., 1995, “The Hilbert Techniques : An alternate approach for non-steady time series analysis,” IEEE Geoscience Remote Sensing Soc. Lttr., 3, pp. 6-11.
【31】 Dazin, P. G., 1992, “Nonlinear Systems,” Cambridge University Press, Cambridge.
【32】 Wu Z. and Huang N. E., 2004, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Centre for Ocean-Land-Atmosphere Studies, Tech. Rep., No.173.
【33】 Whitham, G. B., 1975, “Linear and Nonlinear waves,” John Wiley, New York, NY..
【34】 Chopra, A. K., 2001, “Earthquake Dynamics of Structures: Theory and Applications to Earthquake Engineering,” 2nd edn, Prentice Hall, New Jersey, pp. 83
【35】 Wen, Y.K., 1976, “Method for random vibration of hysteretic system,” Journal of Engineering Mechanics – ASCE, 102(2), pp. 249-63.National Research Institute for Earth Science Disaster Prevention-NIED
【36】 日本防災科學技術研究所。2012年,取自http://www.kyoshin.bosai.go.jp/