跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張智堯
Zh-Yiu Chang
論文名稱: 高重覆率雷射雷達之計時研究
指導教授: 梁忠義
Thomas C. Y. Leung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 121
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 追求更完善的生活品質,永遠是人們不曾懈怠的一項目標,而科技
    的進步正是人類追求生活舒適性與安全性的重要推手。例如,近年來對
    於交通工具導航與防撞系統的小型高重覆率雷射雷達之研究的蓬勃發
    展。在幾種常見的雷射雷達系統中,飛時式雷射雷達由於適合高重覆率
    操作,而且擁有很好的訊號雜訊比,所以非常的適用於如防撞雷達這一
    類的應用。高解析度而快速的時間量測功能是飛時式雷射雷達系統中極
    為重要的一環,同時它也在積體電路零件之特性量測、核子物理實驗以
    及通訊等許許多多的應用中扮演著不可或缺的角色。
    在各種電子式時間量測方式中,傳遞延時法是最近十五年內才開始
    發展的方法,它有兩項獨特的優點,第一:它在兩次測量事件之間所需
    的間隔時間是極短暫的,所以特別適合於高重覆率操作;第二:傳遞延
    時法是一種全數位式的方式,可以很輕易的與計時系統的其他數位電路
    整合在一起,成為一個單晶片積體電路,因而可以大大的減少電路所需
    的空間、耗電量,並提高電路的穩定性。然而在積體電路的製程實務中,
    因為實際佈線考量而無可避免的局部線路之轉折,引起電子元件間連接
    導線長度的變化,進而造成測量結果的非線性現象則是限制精確度的主
    要因素之一。特用積體電路的製作,除了發展極為完善的金屬氧化物半
    導體製程外,可程控邏輯元件也提供了另一種很好的選擇。然而在使用
    泛用型可程控邏輯元件來設計傳遞延時式計時電路時,受限於可程控邏
    輯元件的通用性目的,對於線路的實際佈線有著諸多的限制,在測量線
    性度上將產生更嚴重的問題。但是,使用可程控邏輯元件有著許多的好
    處,諸如設計過程容易而迅速、可以不斷的再修改電路、不必花費大量
    的消耗性製程經費與等待的時間就可以迅速得到符合要求功能的積體電
    路等等。因此本論文的目的即在發展一套可以解決傳遞延遲式計時法的
    非線性問題的新結構,非常適用於可程控邏輯元件的設計環境,同時也
    可以應用於傳統的半導體製程中。


    目錄...................................... . i 圖目錄....................................i i i 表目錄....................................v i 第一章 緒論-光學測距.. ..... . .......................... 1 1-1 連續光波調變型雷射雷達...... . ............ . ....... . 4 1-2 脈衝光波型雷射雷達.......................... . 7 第二章 偵測距離....... .......................... . 9 2-1 測距方程式.............................. . 9 2-2 雜訊分析..............................2 3 2-3 波長選擇-大氣的效應..........................30 2-4 實例計算..............................3 4 第三章 時點判別.................................40 3-1 延時線路式定比例時點鑑別.................. .....4 1 3-2 微積分式定比例時點鑑別................... .....4 4 3-3 延時線路式定比例時點鑑別電路實驗.............. .....4 7 第四章 計時方式................................53 4-1 時間振幅轉換法...........................5 4 4-2 時間伸展法.............................5 6 4-3 游標尺法..............................5 8 4-4 傳遞延時法.............................6 0 第五章 分支型傳遞延時式插補計時器.......................64 5-1 傳遞延時鏈的分支結構........................6 6 5-2 可程控邏輯元件與延時單元......................6 8 5-3 傳遞延時鏈之特性量測........................7 2 5-4 即時校正功能............................7 8 ii 第六章 環狀傳遞延時式時間數碼轉換器.....................8 9 6-1 傳遞延時環...............................90 6-2 脈寬恢復型傳遞延時環.........................93 6-3 輸入與校準電路............................97 6-4 環狀傳遞延時式時間數碼轉換器之特性量測.................103 第七章 結論與討論..............................108 參考文獻.....................................111 附錄一...................................A1 附錄二...................................B1 附錄三.....................................C1

    1. Will Durant 原著,幼獅翻譯中心編譯,世界文明史之二∼埃及與近東(Story of Civilization
    ~ Our Oriental Heritage: the Near East),第41 頁、99-100 頁,幼獅文化事業公司,台北市,
    67 年5 版。
    2. K. Iizuka, Engineering Optics, p.3, Springer-Verlag Berlin, Heidelberg, Germany, 1989.
    3. 李信民,中國數學五千年,第95-96 頁、104 頁,台灣書店,臺北市,87 年初版。
    4. 李繼閔,九章算述及其劉徽注研究,第359 頁、424 頁、19 頁,九章出版社,台北市, 81
    年8 月1 版。
    5. 傅溥,中華文化叢書:中國數學發展史, 第74 頁,中央文物供應社,台北市,71 年2
    月。
    6. J. M. Rüeger, Electronic Distance Measurement: an Introduction, 3rd Ed., p.1, pp.16-21, pp.51-
    83, Springer-Verlag, New York, 1989.
    7. F. Jenkins and H. White, Fundamentals of Optics, 4th Ed., pp.6-7, McGraw Hill, New York,
    1976.
    8. G. Swan, “Optical Remote Sensing,” in Principles of Modern Optical Systems, Editors: I.
    Andonovic and D. Uttamchandani, pp.434-436, Artech House INC., Norwood, MA, 1989.
    9. T. Maiman, “Stimulated Optical Radiation in Ruby,” Nature, vol.187, no.4736, pp.493-494,
    1960.
    10. M. Stitch, E. Woodbury, and J. Morse, “Optical Ranging System Using Laser Transmitter,”
    Electronics, pp.51-53, April 21, 1961.
    11. C. Polhemus, “Two-wavelength Interferometry,” Applied Optics, vol.12, no.9, pp.2071-2074,
    1973.
    12. C. Williams and H. Wickramasinghe, “Optical Ranging by Wavelength Multiplexed
    Interferometry,” Journal of Applied Physics, vol.60, no.6, pp.1900-1903, 1986.
    13. K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of Absolute Distance Employing
    a Tunable CW Dye Laser,” IEEE Transactions on Instrumentation and Measurement, vol.41,
    no.1, pp.36-39, 1992.
    14. J. Payne, “An Optical Distance Measuring Instrument,” Review of Scientific Instruments, vol.44,
    no.3, pp.304-306, 1973.
    15. I. Kaisto, J. Kostamovaara, M. Manninen, and R. Myllyla, “Optical Range Finder for 1.5-10-m
    Distances,” Applied Optics, vol.22, pp.3258-3264, 1983.
    16. M. Sekine, T. Senoo, I. Morita, and H. Endo, “Design Method for an Automotive Laser Radar
    System and Future Prospects for Laser Radar,” in IEEE International Symposium on the
    Intelligent Vehicle, 1992, pp.120-125.
    17. B. S. Goldstein, and G. F. Dalrymple, “Gallium Arsenide Injection Laser Radar,” Proceedings
    of the IEEE, vol.55, no. 2, pp.181-188, 1967.
    18. R. Salathe, W. Bolleter, and H. Gilgen, “Long Range Injection Laser Radar,” Applied Optics,
    vol. 16, no.10, pp.2621-2623, 1977.
    19. B. Querzola, “High Accuracy Distance Measurement by Two-Wavelength Pulsed Laser
    Sources,” Applied Optics, vol.18, no.17, pp.3035-3047, 1979.
    20. M. Taylor, P. Davies, D. W. Brown, W. Woods, I. Bell, and C. Kennedy, “Pulsed CO2 TEA
    Laser Rangefinder,” Applied Optics, vol.17, no.6, pp.885-889, 1978.
    21. T. Cole, M. Boies, A. El- Dinary, R. Reiter, D. Rodriguez, R. Heins, B. Le, R. Moore, M. Grote,
    C. Culpepper, and L. Stillman, “Laser Rangefinder for the Near-Earth Asteroid Rendezvous
    (NEAR) Mission, in Lidar Techniques for Remote Sensing II, Proceedings of SPIE, vol.2581,
    pp.2-26, 25-26 September, 1995.
    22. J. Degnan, “Satellite Laser Ranging: Scientific and Technological Challenges for the New
    Millennium,” in Laser Radar Ranging and Atmospheric Lidar Techniques, Proceedings of SPIE,
    vol.3218, pp.80-91, September 24-26, 1997.
    23. K. Osugi, K. Miyauchi, N. Furui, and H. Miyakoshi, “Development of the Scanning Laser for
    ACC System,” JSAE Review, vol.20, pp.549-554, 1999.
    24. K. Gleichman, P. Tchoryk Jr., and R. Sampson, “Application of Laser Radar to Autonomous
    Spacecraft Landing,” in Laser Radar VI, Proceedings of SPIE, vol.1416, pp. 286-294. January
    23-25, 1991.
    25. G. Dixon, “Laser Radars Produce Three-Dimensional Pictures,” Laser Focus World, vol.34,
    no.8, pp. 137-148, 1998.
    26. O. Yamada, H. Takahashi, M. Kimura, H. Naitoh, and R. Sano, “CO2 Laser Radar 3D Vision
    Sensor for a Mobile Robot,” Advanced Robotics, vol.7, no.3, pp.251-260, 1993.
    27. R. Targ, and R. Bowels, “Lidar Windshear Detection for Commercial Aircraft,” in Laser Radar
    VI, Proceedings of SPIE, vol.1416, pp. 131-138. January 23-25, 1991.
    28. M. Wiegner, A. Ansmann, C. Kähler, J. Ackermann, and U. Wandinger, “Potential Contribution
    of a Backscatter Lidar to Climatological Studies,” in Lidar Techniques for Remote Sensing II,
    Proceedings of SPIE, vol.2581, pp.91-98, 25-26 September, 1995.
    29. T. Fukuda, Y. Matsuura, and T. Mori, “Sensitivity of Coherent Range-Resolved Differential
    Absorption Lidar, Applied Optics, vol.23, no.12, pp.2026-2032, 1984.
    30. P. Cassady, R. Murata, S. McKenna, M. Yoder, W. Keicher, P. Blumenau, D. Leslie, D.
    Youmans, and W. Schafer, “Laser Radar Technology for Airborne Theater Missile Defence,” in
    Applied Laser Radar Technology II, Proceedings of SPIE, vol.2472, pp.50-61, 25 April, 1995.
    31. G. Kamerman, “Laser Radar,” in The Infrared and Electro-Optical Systems Handbook: Active
    Electro-Optical Systems, vol.6, Editor: C. Fox, p.3, pp.9-20, Infrared Information Analysis
    Center in Environmental Research Institute of Michigan and SPIE Optical Engineering Press,
    USA, 1993.
    32. S. Boehmke, J. Bares, E. Mutschler, and N. Lay, “A High Speed 3D Radar Scanner for
    Automation,” in Proceedings of the IEEE International Conference on Robotics & Automation,
    pp.2777-2782, May 1998, Leuven, Belgium.
    33. B. Journet, G. Bazin, and F. Bras, “Conception of an Adaptative Laser Range Finder Based on
    Phase Shift Measurement,” in Proceedings of IEEE/IECON’96, vol.1, pp.784-789, August
    1996, Taipei Taiwan.
    34. A. Sona, “Lasers in Metrology,” part F1 of Laser Handbook, vol.2, Editors: F. Arecchi, and E.
    Schulz-Dubois, ,pp. 1457-1485, North-Holland Publishing, New York, 1988.
    35. 趙克功, “雷射與計量基準(上),” 量測資訊, vol.58, pp.50-56, 1997.
    36. B. Edlén, “The Refractive Index of Air,” Metrologia, vol.2, no.2, pp.71-80, 1966.
    37. K. Brich and M. Downs, “Correction to the Updated Edlén Equation for the Refractive Index of
    Air,” Metrologia, vol.31, pp.315-316, 1994.
    38. P. Bender, “Laser Measurements of Long Distances,” Proceedings of the IEEE, vol.55, no.6,
    pp.1039-1045, 1967.
    39. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Transactions
    on Geoscience and Remote Sensing, vol. GE-23, no.4, pp.398-413, 1985.
    40. P. Bender, and J. Owens, “Correction of Optical Distance Measurements for the Fluctuating
    Atmospheric Index of Refraction,” Journal of Geophysical Research, vol.70, no.10, pp.2461-
    2462, 1965.
    41. K. Im, and C. Gardner, “Estimation of the Differential Pulse Propagation Times in Two-color
    Laser Ranging Systems,” Journal of the Optical Society of America A, vol.3, no.1, pp.143-156,
    1986.
    42. K. Määttä and J. Kostamovaara, “Accurate Time Interval Measurement Electronics for Pulsed
    Time of Flight Laser Radar,” in 14th Topical Meeting of the European Optical Society,
    Optoelectronic Distance/Displacement Measurements and Applications, vol.14, 4p, ISSN 1167-
    5357.
    43. O. Sasaki, T. Taniguchi, T. Ohska, H. Mori, T. Nonaka, K. Kaminishi, A. Tsukuda, H.
    Nishimura, M. Takeda, and Y. Kawakami, “1.2GHz GaAs Shift Register IC for Dead-Time-
    Less TDC Application,” IEEE Transactions on Nuclear Science, vol.36, no.1, pp.512-516,
    1989.
    44. Y. Arai, M. Ikeno, M. Sagara, and T. Emura, “Time Memory Cell VLSI for the PHENIX Drift
    Chamber,” IEEE Transactions on Nuclear Science, vol.45, no.3, pp.735-739, 1998.
    45. C. Y. Chang, W. L. Sun, N. C. Wang, and C. Y. Leung, “A Propagation Delay Ring Time-todigital
    Converter for High Repetition Laser Ranging,” Guangdanzi Jiguang/Journal of
    Optoelectronics • Laser, vol.11. no.3, pp.290-295, 2000.
    46. T. Halldórsson and J. Langerholc, Geometrical Form Factors for the Lidar Function,” Applied
    Optics, vol.17, no.2, pp.240-244, 1978.
    47. J. Wang, and J. Kostamovaara, “Radiometric Analysis and Simulation of Signal Power
    Function in a Short-range Laser Radar,” Applied Optics, vol.33, no.18, pp. 4069-4076, 1994.
    48. J. Harms, “Lidar Return Signals for Coaxial and Noncoaxial Systems with Central
    Obstruction,” Applied Optics, vol.18, no.10, pp.1559-1566,1979.
    49. E. Kreyszig, Advanced Engineering Mathematics, 6th ed., pp.989-990, Wiley, New York, 1988.
    50. L. Levi, “Applied Optics: a Guide to Optical System Design,” Vol.1, pp.336-342, pp.579-580,
    Wiley, New York, 1980.
    51. G. Gould, S. Jacobs, J. LaTourrette, M. Newstein, and P. Rabinowitz, “Coherent Detection of
    Light Scattered from a Diffusely Reflecting Surface,” Applied Optics, vol.3, no.5, pp.648-649,
    1964.
    52. J. Goodman, “Some Effects of Target-Induced Scintillation on Optical Radar Performance,”
    Proceedings of IEEE, vol.53, no.11, pp.1688-1700, 1965.
    53. J. Shapiro, “Target-reflectivity Theory for Coherent Laser Radars,” Applied Optics, vol.21,
    no.18, pp.3398-3407, 1982.
    54. J. Shapiro, B. Capron, and R. Harney, “Imaging and Target Detection with a Heterodynereception
    Optical Radar,” Applied Optics, vol.20, no.19, pp.3292-3313, 1981.
    55. T. Bosch, and M. Lescure, “Experimental Determination of the Useful Reflection Coefficient of
    Non-Cooperative Targets for a Time-of-Flight Laser Rangefinder,” Optical Review, vol.2, no.4,
    pp.289-291, 1995.
    56. C. Wyatt, Electro-Optical System Design, p.40, McGraw-Hill, New York, 1991.
    57. R. Siegel, and J. Howell, Thermal Radiation Heat Transfer, 2nd Ed., p57, McGraw-Hill, New
    York, 1981.
    58. E. Dereniak, and D. Crowe, Optical Radiation Detectors, pp.9-12, Wiley, New York, 1984.
    59. W. Koechner, “Optical Ranging System Employing a High Power Injection Laser Diode,”
    IEEE Transactions on Aerospace and Electronic Systems, vol.4, no.1, pp. 81-91, 1968.
    60. “Avalanche Photodiodes: A User’s Guide,” Application Note, EG&G Optoelectronics Canada.
    61. P. W.ebb, R. Mclntyre, and J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review,
    vol.35, pp.234-278, 1974.
    62. J. Millman, C. Halkias, Integrated Electronics, Analog and Digital Circuits and system, p.383,
    McGraw-Hill, New York, 1972.
    63. C. Motchenbacher, and F. Fitchen, Low-Noise Electronic Design, pp.13-15, Wiley, New York,
    1973.
    64. V. Yakovlev, “High-Precision Laser Rangefinders and Laser Systems for Industrial Use,” Soviet
    Journal of Optical Technology, vol.60, no.10, pp.720-724, 1993.
    65. G. Mamon, D. Youmans, Z. Sztankay, and C. Mongan, “Pulsed GaAs Laser Terrain Profiler,”
    Applied Optics, vol.17, no.6, pp.868-877, 1978.
    66. P. Kurse, L. McGlauchlin, and R. McQuistan, Elements of Infrared Technology, 2nd Ed., pp.172-
    192, Wiley, New York, 1963.
    67. K. Seyrafi, and S. Hovanessian, Introduction to Electro-Optical Imaging and Tracking Systems,
    p.76, p.67, Artech House, Norwood, MA, 1993.
    68. R. Hudson, JR., Infrared System Engineering, pp.119-126, p.135, Wiley, New York, 1969.
    69. P. Forrester, and K. Hulme, “Review Laser Rangefinders,” Optical and Quantum Electronics,
    vol.13, pp.259-293, 1981.
    70. R. Hall, G. Fenner, J. Kingsley, T. Soltys, and R. Carlson, “Coherent Light Emission from
    GaAs Junction,” Physical Review Letters, vol.9, no.11, pp.366-368, 1962.
    71. US Airforce Cambridge Research Laboratories, Handbook of Geophysics, chapter 16,
    Macmillan, New York, 1960.
    72. R. Ahola and R. Myllylä, “A Time-of-Flight Laser Receiver for Moving Objects,” IEEE
    Transaction on Instrumentation and Measurement, vol.35, no.2, pp.216-221, 1986.
    73. T. Paulus, “Timing Electronics and Fast Timing Methods with Scintillation,” IEEE
    Transactions on Nuclear Science, vol.32, no.3, pp.1242-1249, 1985.
    74. M. Maier and P. Sperr, “On the Construction of a Fast Constant Fraction Trigger with
    Integrated Circuits and Application to Various Photomultiplier Tubes,” Nuclear Instruments
    and Methods, vol.87, pp.13-18, 1970.
    75. R. Myllylä, “A Modern Position Lifetime Spectrometer,” Nuclear Instruments and Methods,
    vol.148, pp.267-271, 1978.
    76. T. Araki, “Optical Distance Meter Using a Short Pulse Width Laser Diode and a Fast Avalanche
    Photodiode,” Review of Scientific Instruments, vol.66, no.1, pp43-47,1995.
    77. M. Simpson and G. Young, “A Monolithic, Constant-Fraction Discriminator Using Distributed
    R-C Delay line Shaping,” IEEE Transactions on Nuclear Science, vol.43, no.3, pp.1695-1699,
    1996.
    78. M. Simpson, C. Britton, A. Wintenberg, and G. Young, “An Integrated CMOS Time Interval
    Measurement System with Subnanosecond Resolution for the WA-98 Calorimeter,” IEEE
    Journal of Solid-State Circuits, vol.32, no.2, pp198-205, 1997.
    79. B. Turko, and R. Smith, “A Precision Timing Discriminator for High Density Detector
    Systems,” IEEE Transactions on Nuclear Science, vol.39, no.5, pp.1311-1315, 1992.
    80. A. Kilpelä, J. J. Ylitalo, K. Määttä, and J. Kostamovaara, “Timing Discriminator for Pulsed
    Time-of-Flight Laser Rangefinding Measurements,” Review of Scientific Instruments, vol.69,
    no.5, pp.1978-1984, 1998.
    81. P. Palojärvi, K. Määttä and J. Kostamovaara, “Integrated Time-of-Flight Laser Radar,” IEEE
    Transactions on Instrumentation and Measurement, vol.46, no.4, pp.996-999, 1997.
    82. M. Rao and C. Goh, “A Low-Cost Near-IR Laser Radar,” IEEE Photonics Technology Letters,
    vol.2, no.9, pp.683-685, 1990.
    83. T. Rahkonen and J. Kostamovaara, “Low-Power Time-to-Digital and Digital-to-Time
    Converters for Novel Implementations of Telecommunication Building Blocks,” in 1994 IEEE
    International Symposium on Circuits and Systems, ISCAS’94., vol.3, pp.141-144.
    84. M. Soma, “Mixed-signal on-chip timing measurements,” Integration, the VLSI Journal, vol. 26,
    pp. 151-158, 1998.
    85. F. Bigongiari, R. Roncella, R. Saletti and P. Terreni, “A 250-ps time resolution CMOS multihit
    time-to-digital converter for nuclear physics experiments,” IEEE Transactions on Nuclear
    Science, vol.46, no.2, pp.73-77, 1999.
    86. K. Määttä, and J. Kostamovaara, “A High-Precision Time-to-Digital Converter for Pulsed
    Time-of-Flight Laser Radar Applications,” IEEE Transactions on Instrumentation and
    Measurement, vol.47, no.2, pp.521-536, 1998.
    87. B. Travis, “Crystal Oscillators Set the Pace in Wireless Systems,” EDN Asia, pp.20-38, April
    1998.
    88. A. Berry, “Dual Time to Digital Converter for Delay-line Readout of Position-sensitive Gasfilled
    Detectors,” Review of Scientific Instruments, vol.64, no.5, pp.1222-1228, 1993.
    89. G. S. Gao and R. Partridge, “High speed digital TDC for D0 vertex reconstruction,” IEEE
    Transactions on Nuclear Science, vol.38, no.2, pp. 286-289, 1991.
    90. J. Kostamovaara and R. Myllyla, “Time-to-digital converter with an analog interpolation
    circuit,” Review of Scientific Instruments, vol.57, no.11, pp. 2880-2885, 1986.
    91. J. Rochelle, and M. Simpson, “Current-Mode Time-to-Amplitude Converter for Precision Sub-
    Nanosecond Measurement, in 1992 IEEE Nuclear Science Symposium and Medical Imaging
    Conference, vol.1, pp.468-470.
    92. W. Waddoup and R. Stubbs, “A Simple Time Stretcher with High Resolution,” Nuclear
    Instruments and Methods, vol.137, pp.603-604, 1976.
    93. D. Chu and K. Ferguson, “Ovenless Oscillators will resolve 20-Picosecond pulses,” Electronics,
    November 10, pp.89-95, 1977.
    94. E. Räisänen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A 5-mW Time-to-Digital
    Converter Based on a Stabilized CMOS Delay Line,” in Proceedings of the 38th Midwest
    Symposium on Circuits and Systems, vol.1, pp.393-396, 1995.
    95. J. Kalisz, R. Pelka and A. Poniecki, “Precision time counter for laser ranging to satellites,”
    Review of Scientific Instruments, vol. 65, no. 3, pp. 736-741, 1994.
    96. R. Nutt, “Digital Time Intervalometer,” The Review of Scientific Instruments, vol.39, no.9,
    pp.1342-1345, 1968
    97. J. Dunne, “Self-Calibrating Precision Timing Circuit and Method for a Laser Range Finder,”
    U.S. patent: 5574552, Nov. 12, 1996.
    98. K. Park and J. Park, “Time-to-digital converter of very high pulse stretching ratio for digital
    storage oscilloscopes,” Review of Scientific Instruments, vol.70, no.2, pp.1568-1574, Feb.,
    1999.
    99. P. Horowitz and W. Hill, The art of electronics, 2nd Ed., pp.1023-1024, Cambridge Univ. Press,
    New York, 1989.
    100. T. Watanabe, H. Isomura, S. Agatsuma, Y. Ohtsuka, S. Akita, and T. Hattori, “Development of
    a Time-to-Digital Converter IC for Laser Radar,” JSAE Review, vol.19, pp.161-165, 1998.
    101. E. Rärsänen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, “A BiCMOS Time-to-Digital
    Converter with 30 ps Resolution, in Proceedings of the 1999 IEEE International Symposium on
    Circuits and Systems, ISCAS’99, vol.1, pp.278-281.
    102. C. Ljuslin, J. Christiansen, A. Marchioro, O. Klingsheim, “An Integrated 16-Channel Time to
    Digital Converter,” IEEE Transactions on Nuclear Science, vol.41, no.4, pp.1104-1108, 1994.
    103. S. Kleinfelder, T. Majors, K. Blumer, W. Farr, and B. Manor, “MTD132-A New Sub-
    Nanosecond Multi-hit CMOS Time-to-Digital Converter,” IEEE Transactions on Nuclear
    Science, vol.38, no.2, pp.97-101, 1991.
    104. Y. Arai, T. Matsumura, and K. Endo, “A CMOS Four-Channel ´ 1K Time Memory LSI with
    1-ns/b Resolution,” IEEE Journal of Solid-State Circuits, vol.27, no.3, pp.359-364, 1992.
    105. E. Gerds, J. Spiegel, R. Berg, H. Williams, L. Callewaert, W. Eyckmans, and W. Sansen, “A
    CMOS Time to Digital Converter IC with 2 Level Analog CAM,” IEEE Journal of Solid-State
    Circuits, vol.29, no.9, pp.1068-1076, 1994.
    106. J. Christiansen, “An Integrated High Resolution CMOS Timing Generator Based on an Array
    of Delay Locked Loops,” IEEE Journal of Solid-State Circuits, vol.31, no.7, pp.952-957, 1996.
    107. C. Y. Chang, W. L. Sun, N. C. Wang, and C. Y. Leung, “An Innovative Linear Response Timeto-
    Digital Converter with a Branched Propagation Delay Chain,” Review of Scientific
    Instruments, vol.71. no.6, pp.2572-2576, 2000.
    108. C. Y. Chang, H. C. Yu, W. L. Sun, C. Y. Leung, and Z. X. Chang, “A Single Chip Time-to-
    Digital Converter for Laser Time of Flight Measurement,” Guangdanzi Jiguang/Journal of
    Optoelectronics • Laser, vol.11. no.2, pp.157-162, 2000.
    109. T. Rahkonen and J. Kostamovaara, “The use of stabilized CMOS delay units for the
    digitization of short time intervals,” IEEE Journal of Solid-State Circuits, vol. 28, no. 8, pp.
    887-894, Aug. 1993.
    110. 1998 data book, pp. 29-36, Altera Corporation.
    111. SR620 Universal Time Interval Counter, Operating Manual and Programming Reference,
    Stanford Research Systems, Inc.
    112. D. Santos, S. Dow, J. J. Flasck and M. Levi, “A CMOS delay locked loop and sub-nanosecond
    time-to-digital converter chip,” IEEE Transactions on Nuclear Science, vol. 43, no. 3, pp.
    1717-1719, June, 1996.
    113. Y. Arai, “TMC-A CMOS time to digital converter VLSI,” IEEE Transaction on Nuclear
    Science, vol. 36, no. 1, pp. 528-531, 1989.
    114. W. Zhou, Z. Xuan, and J. Yu, “Some New Methods for Precision Time Interval
    Measurement,” in Proceedings of the 1997 Annual IEEE International Frequency Control
    Symposium, pp.418-421, 1997.
    115. J. Kalisz, R. Szplet, J. Pasierbinski and A. Poniecki, “Field-programmable-gate-array-based
    time-to-digital converter with 200-ps resolution,” IEEE Transactions on Instrumentation and
    Measurement, vol. 46, no. 1, pp. 51-55, 1997.
    116. S. Jang, S. Han, C. Kim, Y. Jun and H. Yoo, “A Compact Ring Delay Line for High Speed
    Synchronous DRAM,” in IEEE 1998 Symposium on VLSI Circuits, Digest of Technical Papers,
    pp.60-61.
    117. Poki Chen, Shen-Iuan Liu and Jingshown Wu, “Highly accurate cyclic CMOS time-to-digital
    converter with extremely low power consumption,” Electronics Letters, vol. 33, no. 10, pp.
    858-860, 1997.
    118. Poki Chen, and Shen-Iuan Liu, “A Cyclic CMOS Time-to-Digital Converter with Deep Subnanosecond
    Resolution,” in IEEE 1999 Custom Integrated Circuits Conference, pp. 605-608,
    1999.
    119. E. Rärsänen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, “A Low-Power CMOS Timeto-
    Digital Converter,” IEEE Journal of Solid-State Circuits, vol.30, no.9, pp.984-990, 1995.
    120. M. Gorbics, J. Kelly, K. Roberts and R. Sumner, “A High Resolution Multihit Time to Digital
    Converter Integrated Circuit,” in IEEE 1996 Nuclear Science Symposium, vol.1, pp.421-425,
    1996.

    QR CODE
    :::