| 研究生: |
曾家麟 Chia-lin Tseng |
|---|---|
| 論文名稱: |
光電化學法產氫反應器之設計與熱流特性分析 Design and Thermal-Fluid Analysis of Photoelectrochemical Hydrogen Production Reactor |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 太陽能產氫 、光電化學法 、反應器設計 、產氫量及產氫效率 |
| 外文關鍵詞: | photoelectrochemical method, solar-to-hydrogen efficiency, hydrogen volume production, reactor design, solar hydrogen production |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部份,探討AM 1.5(G)太陽光於光電化學法產氫的熱力學分析。因裂解水的能量隨著反應器的溫度升高而降低,故利用太陽光長波能量加熱反應器可增加產氫的效率。
半導體光電極能隙的增加會降低光電流的輸出,當AM 1.5(G)太陽光全部激發成電子產生光電流,理論最大的光電流為63.8 mA/cm2。對半導體能隙2.0 eV及3.0 eV的理論最大光電流分別為12.4 mA/cm2及1.29 mA/cm2。太陽光理論最大功率轉換效率為44.1 %,對能隙2.0 eV及3.0 eV的功率轉換效率則分別為24.7 %及3.9 %。探討溫度及量子效率上,當溫度為647 K及量子效率為30 %時,半導體能隙為2.0 eV及3.0 eV的理論最大產氫量分別為47.5 L/m2-hr及8.0 L/m2-hr;而理論最大產氫效率則分別為16.1 %及2.7 %。增加量子效率較提升反應器溫度能更有效地增加產氫量及產氫量效率,但若固定量子效率下,提升反應器溫度對增加產氫量及產氫效率為一非常有效的方法。
第二部份,探討4種不同光電化學法產氫反應器的熱傳設計及熱流特性。AM 1.5(G)太陽光根據半導體光電極的能隙,分為短波及長波。短波能量用來產生電子與電洞對,長波能量則利用於加熱反應器。由於裂解水所需的能量隨溫度升高而降低,故利用長波能量加熱反應器可增加系統效率。因此,長波能量如何利用來加熱反應器,為非常重要的課題。
結果顯示,越多長波能量被反應器所吸收,產氫量及產氫效率越高。D設計下,太陽光強度為4000 W/m2及量子效率為30 %時,產氫量及產氫效率於能隙2.0 eV分別為186.5 L/m2-hr及15.9 %。光電化學法產氫反應器參數設計的影響,將於本論文中詳細討論。
In partⅠ, the thermodynamic analysis of photoelectrochemical (PEC) hydrogen production is performed in this thesis for air mass 1.5 solar irradiation. Because the energy required for splitting water decreases as temperature is increased, heating the system by using the long wavelength energy will increase the system efficiency.
As the energy band gap of the photoelectrode increases, the induced photo-current is decreased. If photons absorbed are all excited, the maximum photo-current is 63.8 mA/cm2. For energy band of 2.0 eV and 3.0 eV, the maximum photo-current is respectively 12.4 mA/cm2 and 1.29 mA/cm2. The maximum power conversion efficiency of a PEC cell is 44.1 %. For 2.0 eV and 3.0 eV, the power conversion efficiency is 24.7 % and 3.9 %, respectively. At 647 K and quantum efficiency=30 %, the maximum hydrogen production rate is 47.5 L/m2-hr and 8.0 L/m2-hr for 2.0 eV and 3.0 eV, and the maximum solar-to-hydrogen efficiency is 16.1 % and 2.7 % for 2.0 eV and 3.0 eV, respectively. In order to increase the maximum hydrogen production rate and the solar-to-hydrogen efficiency, it is more effective to raise the quantum efficiency than raising the reaction temperature. But for fixed quantum efficiency, raising the reactor temperature is also an effective way to increase the solar-to-hydrogen efficiency.
In part Ⅱ, the heat transfer and flow characteristics of a PEC hydrogen generation reactor are investigated numerically. Four different reactor designs are considered. The solar irradiation is separated into short and long wavelength parts depending on the energy band gap of the photoelectrode used. While short wavelength part is used to generate electron and hole pairs, the long wavelength part is used to heat the system. Because the energy required for splitting water decreases as temperature is increased, heating the reactor by using the long wave energy increases the system efficiency. Thus, how the long wavelength energy is absorbed by the reactor is very important.
The results show that more long wavelength energy kept inside the reactor can increase the solar-to-hydrogen efficiency. For energy band gap of 2.0 eV photoelectrode, careful reactor design can increase solar-to-hydrogen efficiency by 9.7 %. For design D under 4000 W/m2 irradiation and a quantum efficiency of 30 %, is found to be 15.9 % and the hydrogen volume production rate is 186.5 L/m2-hr for 2.0 eV. Effects of several parameters on the PEC hydrogen reactor are discussed in detail.
[1] H. Bob and J. Nicola, “Brace yourself for the end of cheap oil”, New Scientist, Vol. 179, pp. 9-10, 2003.
[2] S.Z. Baykara, “Hydrogen as fuel: a critical technology?”, International Journal of Hydrogen Energy, Vol. 30, pp. 545-553, 2005.
[3] http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html
[4] M. Momirlan and T.N. Veziroglu, “Current status of hydrogen energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 141-179, 2002.
[5] J.I. Levene, M.K. Mann, R.M. Margolis and A. Milbrandt, “An analysis of hydrogen production from renewable electricity sources”, Solar Energy, Vol. 81, pp. 773-780, 2007.
[6] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[7] R.G. Lemus and J.M.M Duart, “Updated hydrogen production costs and parities for conventional and renewable technologies”, International Journal of Hydrogen Energy, Vol. 35, pp. 3929-3936, 2010.
[8] R.D. Levie, “The electrolysis of water”, Journal of Electroanalytical Chemistry, Vol. 476(1), pp. 92-93, 1999.
[9] H. Ohya, M. Yatabe, M. Aihara, Y. Negishi and T. Takeuchi, “Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy”, International Journal of Hydrogen Energy, Vol. 27, pp. 369-376, 2002.
[10] M. Roeb, M. Neises, J.P. Sack, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz and C. Sattler, “Operational strategy of a two-step thermochemical process for solar hydrogen production”, International Journal of Hydrogen Energy, Vol. 34, pp. 4537-4545, 2009.
[11] J. Fedorowski and W.R. Lacourse, “A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC”, Analytica Chimica Acta, Vol. 657, pp. 1-8, 2010.
[12] D. Dasa and T.N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[13] R.C. Saxena, D.K. Adhikari and H.B. Goyal, “Biomass-based energy fuel through biochemical routes: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 167-178, 2009.
[14] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[15] P. Lianos, “Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: A review of a re-emerging research field”, Journal of Hazardous Materials, Vol. 185, pp. 575-590, 2011.
[16] Z. Zhang, M.F. Hossain and T. Takahashi, “Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation”, International Journal of Hydrogen Energy, Vol. 35, pp. 8528-8535, 2010.
[17] N. Terasaki, K. Kakutani, T. Akiyamab and S. Yamada, “A double-driven photoelectrochemical cell”, Synthetic Metals, Vol. 139, pp. 511-514, 2003.
[18] I.E. Paulauskas, J.E. Katz, G.E. Jellison, N.S. Lewis and L.A. Boatner, “Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation”, Thin Solid Films, Vol. 516, pp. 8175-8178, 2008.
[19] M. Antoniadou and P. Lianos, “Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell”, Applied Catalysis B: Environmental, Vol. 99, pp. 307-313, 2010.
[20] K. Tennakone, P.V.V. Jayaweera and P.K.M. Bandaranayake, “Dye-sensitized photoelectrochemical and solid-state solar cells: charge separation, transport and recombination mechanisms”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 158, pp. 125-130, 2003.
[21] S.K. Deya, N.B. Manika, S. Bhattacharyab and A.N. Basu, “A dye/polymer based solid state thin film photoelectrochemical cell used for light detection”, Synthetic Metals, Vol. 118, pp. 19-23, 2001.
[22] O.N. Srivastava, R.K. Karn and M. Misra, “Semiconductor-septum photoelectrochemical solar cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 25, pp. 495-503, 2000.
[23] N. Getoff, “Photoelectrochemical and photocatalytic methods of hydrogen production: A short review”, International Journal of Hydrogen Energy, Vol. 15(6), pp. 407-417, 1990.
[24] S. Dunn, “Hydrogen futures: toward a sustainable energy system”, International Journal of Hydrogen Energy, Vol. 27, pp. 235-264, 2002.
[25] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[26] V. Urade, “Photoelectrochemical generation of hydrogen”, Report of chemical engineering, Purdue university, 2006.
[27] S. Chandra, “Photoelectrochemical solar cells”, New York: Gordon and Breach, 1985.
[28] M. Modest, “Radiative heat transfer”, McGraw-Hill, New York, 1993.
[29] Oriel-Instruments. Book of photon tools, 1999.
[30] R.F. Service, “Catalyst boosts hopes for hydrogen bonanza”, Science, Vol. 297, pp. 2189-2190, 2002.
[31] S.U.M. Khan, M. Al-Shahry and W.B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2”, Science, Vol. 297, pp. 2243-2245, 2002.
[32] B. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, Inc, New Jersey, 2000.
[33] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager Ⅲ, E.E. Haller, H. Lu and W.J. Schaff, “Effects of the narrow band gap on the properties on InN”, The Journal of Physical Review B, Vol. 66(20), pp. 2014031-2014034, 2002.
[34] http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html
[35] http://spie.org/x26116.xml?highlight=x2358&ArticleID=x26116
[36] J.R. Bolton, “Solar photoproduction of hydrogen: A review”, Solar Energy, Vol. 57(1), pp. 37-50, 1996.
[37] M.D. Archer and J.R. Bolton, “Requirements for ideal performance of photochemical and photovoltaic solar energy converters”, The Journal of Physical Chemistry, Vol. 94, pp. 8028-8036, 1990.
[38] A. Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with an electrochemical photo-cell”, Journal of The Electrochemical Society, Vol. 122, pp. 1487-1489, 1975.
[39] A.K. Ghosh and H.P. Muruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, The Journal of The Electrochemical Society, Vol. 124, pp. 1516-1512, 1977.
[40] J.F. Houlihan, D.B. Armitage, T. Hoovler, D. Bonaquist, D.P. Madacsi and L.N. Mulay, “Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water”, Materials Research Bulletin, Vol. 13, pp. 1205-1211, 1978.
[41] J.G. Mavroides, D.I. Tchernev, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Materials Research Bulletin, Vol. 10(10), pp. 1023-1030, 1975.
[42] J. Akikusa and S.U.M Khan, “ Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 875-882, 1997.
[43] A.J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals”, Nature, Vol. 257, pp. 383-386, 1975.
[44] J.G. Mavroides, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Applied Physics Letters, Vol. 28, pp. 241-243, 1976.
[45] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson and D.S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, Journal of the American Chemical Society, Vol. 98(10), pp. 2774-2779, 1976.
[46] O. Khaselev and J.A. Turner, “A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting”, Science, Vol. 280, pp. 425-427, 1998.
[47] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, Exemplified by RuO2-catalyzed AlGaAs/Si Photoelectrolysis”, The Journal of Physical Chemistry B, Vol. 104, pp. 8920-8924, 2000.
[48] H. Morisaki, T. Watanabe, M. Iwase and K. Yazawa, “Photoelectrolysis of water with TiO2-covered solar-cell electrodes”, Applied Physics Letters, Vol. 29(6), pp. 338-340, 1976.
[49] N. Giordano, V. Antonucci, S. Cavallaro, R. Lembo and J.C.J. Bart, “Photoassisted decomposition of water over modified rutile electrodes”, International Journal of Hydrogen Energy, Vol. 7(11), pp. 867-872, 1982.
[50] T. Watanabe, A. Fujishima and K. Honda, “Photoelectrochemical reactions at SrTiO3 single crystal electrode”, Bulletin of the Chemical Society of Japan, Vol. 49(2), pp. 355-358, 1976.
[51] M. Okuda, K. Yoshida and N. Tanaka, “Photoeffects on semiconductor ceramics electrodes”, Japanese Journal of Applied Physics, Vol. 15(8), pp. 1599, 1976.
[52] D. Laser and A.J. Bard, “Semiconductor electrodes”, Journal of the Electrochemical Society, Vol. 123(12), pp. 1828-1832, 1976.
[53] V. Guruswamy, O.J. Murphy, V. Young, G. Hildreth and O.M. Bockris, “Photoelectrochemical behavior and surface characterization of some lanthanum-based perovskite oxide electrodes”, Solar Energy Materials, Vol. 6(1), pp. 59-83, 1981.
[54] M.Y. El Zayat, A.O. Saed, M.S. El-Dessouki, “Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes”, International Journal of Hydrogen Energy, Vol. 23(4), pp. 259-266, 1998.
[55] P.D. Fleischauer and J.K. Allen, “ Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation”, The Journal of Physical Chemistry, Vol. 82(4), pp. 432-438, 1978.
[56] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photoelectrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, Vol. 27(1), pp. 19-26, 2002.
[57] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol. 26, pp. 653-659, 2001.
[58] S. Licht, “Efficient solar generation of hydrogen fuel-a fundamental analysis”, Electrochemistry Communications, Vol. 4, pp. 790-795, 2002.
[59] S. Licht, L. Halperin, M. Kalina, M. Zidmanab and N. Halperinb, “Electrochemical potential tuned solar water splitting”, Chemical Communications, pp. 3006-3007, 2003.
[60] S. Licht, “Solar water splitting to generate hydrogen fuel: photothermal electrochemical analysis”, The Journal of Physical Chemistry B, Vol. 107, pp. 4253-4260, 2003.
[61] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[62] S. Licht, S. Ghosh, H. Tributsch and S. Fiechter, “ High efficiency solar energy water splitting to generate hydrogen fuel: Probing RuS2 enhancement of multiple band electrolysis”, Solar Energy Materials & Solar Cells, Vol. 70, pp. 471-480, 2002.
[63] S. Dutta, J.H. Morehouse and J.A. Khan, “Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 211-219, 1997.
[64] M.A. Rosen, “Energy and exergy analysis of electrolytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 20(7), pp. 547-553, 1995.
[65] C.L Tseng, C.J. Tseng and J.C. Chen, “Thermodynamic analysis of a photoelectrochemical hydrogen production system”, International Journal of Hydrogen Energy, Vol. 35, pp. 2781-2785, 2010.
[66] A.J. Nozik, “p-n photoelectrolysis cells”, Applied Physics Letters, Vol. 29(3), pp. 150-153, 1976.
[67] M. Grzegorz, K. Atsuo, M. Sergiy, T. Araib, K. Shinodab and K. Tohjib, “Optimization of a two-compartment photoelectrochemical cell”, International Journal of Hydrogen Energy, Vol. 28, pp. 919-926, 2003.
[68] M. Mridula, R.N. Pandey and O.N. Srivastava, “Solar hydrogen production employing n-TiO2 SC-CEP photoelectorchemical solar cell”, International Journal of Hydrogen Energy, Vol. 22(5), pp. 501-508, 1997.
[69] N.A Kelly and T.L. Gibson, “Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 1658-1673, 2006.
[70] N.A. Kelly and T.L. Gibson, “Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol. 33, pp. 6420-6431, 2008.
[71] C.C. Lo, C.W Huang, C.H Liao and J.C.S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, Vol. 35, pp. 1523-1529, 2010.
[72] K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe and H. Arakawa, “Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system”, Chemical Physics Letters, Vol. 277, pp. 387-391, 1997.
[73] S.W. Bae, S.M. Ji, S.J. Hong, J.W. Jang and J.W. Lee, “Photocatalytic overall water splitting with dual-bed system under visible light irradiation”, International Journal of Hydrogen Energy, Vol. 34, pp. 3243-3249, 2009.
[74] J.K. Goodyear and V.L. Lindberg, “Low absorption float glass for back surface solar reflectors”, Solar Energy Materials, Vol. 3, pp. 57-67, 1980.
[75] P.H. Theunissen and W.A. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors”, Solar Energy, Vol. 35(4), pp. 311-320, 1985.
[76] http://rredc.nrel.gov/solar/spectra/am1.5/
[77] D.J. Segelstein, “The Complex Refractive Index of Water”, Report of University of Missouri-Kansas City, 1981.
[78] J. Boussinesq, “Theories anaytique de la chaleur”, Gauthier-Villars, Paris, 1903.
[79] S.V. Patankar, “Numerical heat transfer and fluid flow”, McGraw-Hill, Washington, 1980.
[80] J.R. Howell, “Thermal radiation heat transfer”, Hemisphere, Washington, 1992.
[81] B.G. Carlson and K.D. Lathrop, “Discrete-ordinates angular quadrature of the neutron transport equation”, Technical Information Series Report, Los Alamos Scientific Laboratory, 1965.
[82] M.L. Williams, A. Yucel and S. Acharya, “Natural convection and radiation in a square enclosure”, Numerical Heat Transfer Part A, Vol. 15, pp. 261-278, 1989.
[83] E.R. Williams, J.E. Faller and H.A. Hill, “New experimental test of Coulomb''s Law: A laboratory upper limit on the photon rest mass”, Physical Review Letters, Vol. 26, pp. 721-724, 1971.
[84] http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefor.html#c3
[85] A. Kay, L. Cesar and M. Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714-15721, 2006.
[86] J.L. Cao, Z.C. Wu and J.Q. Zhang, “Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, Journal of Electroanalytical Chemistry, Vol. 595, pp. 71-77, 2006.
[87] J. Nowotny, C.C. Sorrell, T. Bak and L.R. Sheppard, “Solar-hydrogen: Unresolved problems in solid-state science”, Solar Energy, Vol. 78, pp. 593-602, 2005.
[88] E.L. Miller, R.E. Rocheleau and X.M. Deng, “Design considerations for a hybird amorphous silicon/photoelectrochemical multijunction cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 28, pp. 615-623, 2003.
[89] A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 197-202, 2006.
[90] A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting”, International Journal of Hydrogen Energy, Vol. 32, pp. 2673-2678, 2007.