| 研究生: |
陳暉旭 Hui-Hsu Chen |
|---|---|
| 論文名稱: |
以數位全像術重建多波長環狀光束之研究 Multi-wavelength donut laser beams reconstruction based on digital holography |
| 指導教授: |
陳思妤
Szu-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 環狀光束 、受激輻射耗損顯微術 、數位全像術 |
| 外文關鍵詞: | Donut beam, Stimulated Emission Depletion, digital holography |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,在生醫顯微顯影技術上已經有許多突破繞射極限提高螢光顯微解析度的方法問世,而其中STED(Stimulated Emission Depletion)顯微技術備受注目。STED的技術使用是兩道雷射光束來進行,一道光激發螢光基團使其發光,另一道光則使用中心光強度為零的環狀雷射光抑制所激發區域外圍的螢光,使其螢光強度透過激發射損耗過程而降低,以減少螢光光點的大小,進而提高解析度。因而許多產生環狀光束方法也被研究出,本論文將針對產生環狀光束的方法來進行研究,在此模擬以數位全像術快速地重建不同波長的環狀光束,且當改變讀取光的波長時,比較所獲得的環狀光束前後的差異。另外本論文也討論擁有線偏振以及圓偏振的環狀光束,重建前後進行強聚焦時焦點處光場的分佈情形,並且與經由Hermite高斯光束所產生擁有徑向偏振與方位角偏振的環狀光束做比較。藉由數位全像術的方法,有助於得到不同波長且不同偏振的環狀光束,並可將其適用於對環狀光束有不同要求的應用中。
In recent years, many ingenious ideas by passing the optical diffraction limit have been developed to improve the resolution in biological microscopy. Especially the Stimulated Emission Depletion microscopy (STED) was much attended. The STED technology uses two laser beams, the first one is used to excite the groups of fluorescence, the other one is a beam of zero intensity in center is used to inhibit the fluorescence surrounding the excited groups of fluorescent, so that the resolution was increased by the shrinking the area of fluorescence caused by the quenching of fluorescent intensity through the depletion from stimulated emission. Thus, various methods of generating donut-shaped beams had been researched and developed. This study is aimed to simulate the digital holography to rapidly reconstruct the donut-shaped beam and to compare the results from changing the wavelength, then to discuss the producing ways of donut-shaped beams. In addition, this study also aimes at discussing the linearly and circularly polarized donut-shaped beams , as well as the optical field distribution before and after tight focus, meanwhile comparing the donut-shaped beams formed with radial and azimuthal polarization which generated by Hermite Gaussian beams. By using the digital holography technology, we are able to obtain different donut-shaped beams with different wavelengths and polarization, which can be applied in various experiential circumstance requiring donut-shaped beams.
1. E. Abbe, “ Beitrage zur Theorie des Mikroskops und dermikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9, 413-420, 1873.
2. S. W. Hell and J. Wichmann, “ Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782, 1994.
3. B. Harke, “ Resolution scaling in STED microscopy,” Opt. Express, 16, 4154-4162, 2008
4. T. A. Klar, S. Jakobs, M. Dyba, “ Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” PNAS 97, 8206-8210, 2000.
5. S. W. Hell and J. Wichmann, “ Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782, 1944.
6. T. A. Klar and S. W. Hell, “ Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954, 1999.
7. B. R. Rankin, R. R. Kellner, S. W. Hell, “ Stimulated emission depletion microscopy with stimulated raman scattering light sources,” Opt. Lett.Vol. 33, No. 21, 2008
8. 李書恩,” The effects of donut mode and fluorescence lifetime on the resolution improvement of two-photon excitation STED microscopy”, 中央大學光電科學與工程學系碩士論文, 民國102年6月
9. I. W. Katrin, “ STED microscopy in visible range,” PhD. Dissertation, Ruperto-Carola University of Heidelberg, Natural Sciences, 2006
10. S. Li, C. Kuang, Z. Ding, Z. Hao, Z. Gu, J. Ge, X. Liu, “ A Review on Concept and Development of Stimulated Emission Depletion Microscopy(STED),” ALVS. Vol. 22, No.2, 2013.
11. 朱士維,”光學顯微技術的新進發展”, The World of Physics, 76-81
12. M. Padgett, J. Arlt and N. Simpson, “ An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser mides,” Am. J. Phys. 64, 1996.
13. J. Yan, Y. Lu, P. Wang, H. Ming, “ Study of Focal Spot of Radially Polarized Beam,” ACTA, Vol. 30, No. 12, 2010.
14. M. A. Golub, S. S. Liran, D. S. Nir, A. F. Asher, “ Mode-matched phase diffractive optical element for detecting laser modes with spiral phases,” Opt Lett, Vol. 46, No. 32, 2007.
15. W. Cheng, “ Optical vortex beams: generation propagation and applications,” Opt. Electro, 2013.
16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman,“ Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189, 1992.
17. N. R. Heckenberg, R. M. Duff, C. P. Smith, A. G. White, “ Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 223-223, 1992.
18. M. W. Beijersbegen, “ Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Communication 112, 321-327, 1994.
19. J. Yin, H. Noh, K. Lee, “ Generation of a dark hollow beam by a small hollow fiber,” Opt. Communication 138, 287-292, 1997.
20. Z. Y. Rong, Y. J. Han, S. Z. Wang and C. S. Guo, “ Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators, “ Opt. Exp. Vol. 22, No. 2, 1636-1644, 2014
21. http://grad.physics.sunysb.edu/~campbell/amo/theory.html
22. http://www.phys.keio.ac.jp/guidance/labs/sasada/research/orbangmom-jp.html
23. http://www.phys.keio.ac.jp/guidance/labs/sasada/research/orbangmom -jp.html
24. http://comments.gmane.org/gmane.comp.science.electromagnetism.meep.general/5322
25. J. E. Curtis and David. G. Grier, “Modulated optical vortices”, Opt. Lett .28 , (2003).
26. W. Cheng, “ Optical vortex beams: generation propagation and applications,” Opt. Electro, 2013.
27. D. Gabor, “A new microscopic principle,” Nat. 161, 777-778, 1948
28. R. M. Robert, “ Holography,” Pedrotti3, chapter 16, lecture 7.
29. J. W. Goodman, “Digital image formation from electronically detected holograms,” in Computerized Imaging Techniques, (International Society for Optics and Photonics, 1967), 176-181.
30. V. Micol, C. Ferreiral, Z. Zalevsky, J. Garcial, “ Basic principles and applications of digital holographic microscopy,” Microscopy: Science, technology, Application and Education, A. Méndez-Vilas and J. Díaz Eds.
31. V. Nicolas , A. Michael, “ Off-axis digital hologram reconstruction: some practical consideration,” OSA 50, 136, 2011.
32. K. K Myung, “ Principles and techniques of digital holographic microscopy,” SPIE, 018005-1, Vol. 1, 2010.
33. U. Schnars and W. P. O. Jueptner, “ Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, 85-101, 2002.
34. H. Jeff, “ Digital holography: digital techniques render real-time response in holography,” Photonic Frontiers, 2012.
35. 徐維懋,” Mirror-assisted Tomographic Phase Microscopy,” 中央大學光電科學與工程學系碩士論文, 民國103年1月
36. 陳瑋鑫,” The Study of Digital Optical Phase Conjugation and Novelty Filtering Based on Kitty Self-Pumped Phase Conjugator,” 中央大學光電科學與工程學系碩士論文, 民國102年6月
37. B. Richards and E. Wolf, ” Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358-379, 1959.
38. L. John, “ Polarization of tightly focused laser beams,” Appl. Opt. 5, 6–14, 2003.
39. Z. M. Zhang, J. X. Pu, X. Q. Wang, “ Tight focusing of radially and azimuthally polarized vortex beams through a dielectric interface,” Chin. Phys. Lett, Vol. 25, No. 5, 2008.