| 研究生: |
Gea Oktavianus Oktavianus Gea |
|---|---|
| 論文名稱: | Studies of Tunneling Event on the Single-Electron Box |
| 指導教授: | Yung-Fu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 單電子盒 、單電子晶體管 、角度陰影製程法 、SET電荷組態 、隧穿事件 |
| 外文關鍵詞: | single-electron box, single-electron transistor, two fabrication processes, charge configuration of set, tunneling event |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我在這個實驗中的目標是在單電子盒(SEB)上進行電子隧穿事件(tunneling event)。 SEB由兩層鋁和一個絕緣屏層組成。當施加閘極電壓時,每個單電子都會隧穿SEB的能量障礙(barrier)。將SEB的閘極電壓施加到島周圍以操縱電荷配置。它必須在低溫下工作。
SEB中的電子隧穿事件由單電子晶體管(SET)進行測量。在測量結果中,我相信電子隧穿事件是經由過SEB接面(junction)的能量障礙發生的。我看到許多與SEB接面上的電子隧穿事件有關的信號。由於時間限制,我僅測量SEB上罕見的電子隧穿事件。根據研究,無法將實驗作完善是因為SEB的電阻在大氣壓下隨時間而變高。另一個原因是電子隧穿速度更快,這也為本次實驗困難之處: 不穩定的製程以及來自儀器所線之採樣速度不夠。
My goal in this experiment is electron tunneling event on the single-electron box (SEB). The SEB consists of two layers of aluminum and an insulating barrier. Every single-electron will tunnel through the barrier of the SEB when the gate voltage is applied. The gate voltage of the box is applied to around the island to manipulate charge configuration. It works at low-temperature.
The electron tunneling event in the SEB is inspected by a single-electron transistor (SET). In the measurement result, I believe that the electrons tunneling event occurs through the barrier of SEB junction. I see many signals related to the electron tunneling event on the SEB junction. Because of time-limited, I only measure electrons tunneling event that is rare on the SEB. According to studies, it happened because the resistance on the SEB becomes higher along time at under atmospheric pressure. Another reason is electrons tunneling is faster.
1. Mermin, N.A.a.N., Solid State Physics. 1976, Holt, Rinehart and Winston: United State. 826.
2. Likharev, K.K., Single-Electron Devices and Their Applications. IEEE, 1913. 2: p. 109.
3. Millikan, R.A., On the Elementary Electrical Charge and the Avogadro Constant. Phys Rev Lett 1913. 2(2): p. 109-143.
4. Leo P. Kouwenhoven, et al., Electron Transport in Quantum Dots. Advanced Study Institute, 1997.
5. Fulton, T.A. and G.J. Dolan, Observation of single-electron charging effects in small tunnel junctions. Phys Rev Lett, 1987. 59(1): p. 109-112.
6. Kuzmin. L, P.D., T. Claeson , and K. Likharev, Correlated Single Electron Tunneling In Ultrasmall Junctions. Phys. Rev Lett, 1989. 62: p. 197-228.
7. Giazotto, F., et al., Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 2006. 78(1): p. 217-274.
8. Scholze, A., Simulation of single-electron devices. 2000, Institute of Technology Zurich.
9. Binder, F., et al., Thermodynamics in the Quantum Regime. 2018, Springer, Cham.
10. Pekola, J.V.K.a.J.P., Quantum Thermodynamics in a Single-Electron Box. arXiv:1805.10667, 2018.
11. Sun, C.H., Experimental determination of the elastic cotunneling rate in a hybrid single-electron box, in Department of Physics. 2015, National Central University: Taiwan. p. 49.
12. Devoret, M.H. and R.J. Schoelkopf, Amplifying quantum signals with the single-electron transistor. Nature, 2000. 406(6799): p. 1039-46.
41
13. Pekola, J.P. and O.P. Saira, Work, Free Energy and Dissipation in Voltage Driven Single-Electron Transitions. Journal of Low Temperature Physics, 2012. 169(1-2): p. 70-76.
14. Holmqvist, T., Tunnel Junction Thermometry and Thermalisation of electrons, in Low Temperature Laboratory. 2010, Aalto University. p. 60 + app. 30.
15. Singh, S., Statistics of rare events in single electron devices, in Department of Applied Physics. 2019, Aalto University: Aalto University publication series DOCTORAL DISSERTATIONS, 28/2019. p. 97 + app. 55.
16. Gupta, M., A Study of Single electron Transistor (SET). International Journal of Science and Research (IJSR), 2013. 5(1 Januarry 2016): p. 474-479.
17. Islam, M., Parallel Fabrication and Transport Properties of Carbon Nanotube Single Electron Transistors. 2015, University of Central Florida.
18. Saira, O.P., et al., Test of the Jarzynski and Crooks fluctuation relations in an electronic system. Phys Rev Lett, 2012. 109(18): p. 180601.
19. Fornieri, A., M.J. Martinez-Perez, and F. Giazotto, Electronic heat current rectification in hybrid superconducting devices. Aip Advances, 2015. 5(5): p. 053301.
20. Feschchenko, A., Electron thermometry, refrigeration and heat transport in nanostructures at sub-kelvin temperatures, in Department of Applied Physics. 2017, Aalto University Aalto University Series Doctoral dissertations.
21. Tinkham, M., Introduction to superconductivity. 2004, Mineola, New York: Dover Oublications, Inc. 454.
22. Noguchi, T., T. Suzuki, and T. Tamura, Subgap Tunneling Current at Low Temperature in Nb/Al-AlN/Nb SIS Junctions. IEEE Transactions on Applied Superconductivity, 2011. 21(3): p. 756-759.42
23. Teufel, J.D., Superconducting Tunnel Junctions as Direct Detectors for Submillimeter Astronomy. 2008, Yale University.
24. Korotkov, A.N., Charge sensitivity of superconducting single‐electron transistor. Applied Physics Letters, 1996. 69(17): p. 2593-2595.
25. Ronen, Y., et al., Charge of a quasiparticle in a superconductor. Proc Natl Acad Sci U S A, 2016. 113(7): p. 1743-8.
26. Devoret, M.H., Quantum fluctuation in Electron Circuits. INIS, 1995. 29(50): p. 351-386.