跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許恆杰
Heng-Chieh Hsu
論文名稱: 合成式擔保債務憑證內非標準型分劵之定價與避險
Pricing and Hedging Non-Standardized Synthetic CDO Tranches
指導教授: 岳夢蘭
Meng-Lan Yueh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 94
語文別: 英文
論文頁數: 53
中文關鍵詞: 基點相關性價差凸性合成式擔保債務憑證標準型分劵非標準型分劵HLPGC模型複合相關性
外文關鍵詞: Spread Convexity, Standardized Tranches, Non-Standardized Tranches, Homogeneous Large Pool Gaussian Copula model, Compound Correlations, Base Correlations, Synthetic CDO
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著合成式擔保債務憑證內標準型分劵的興起發展,為了能迎合不同投資人的風現偏好,透過結合合成式擔保債務憑證內標準型分劵的市場報價,我們嘗試對合成式擔保債務憑證內非標準型分劵進行定價與避險。在本篇論文中,我們會選定一組標準型DJ iTraxx Europe分劵的市場報價,利用HLPGC模型對照各分劵的市場報價求出各分劵的複合相關性及基點相關性。更進一步我們可以利用求出的基點相關性對任何非標準型分劵進行定價。至於在非標準型分劵的避險方面,對於第一層風險,我們針對在價差改變的風險並且利用delta避險法建立各非標準型分劵的避險部位。我們也會討論第二層風險像是價差凸性風險。我們發現非標準型低層分劵在經過delta避險後會使投資人從價差凸性發生的情形下獲利。相反地,非標準型高層分劵在經過delta避險後則會使投資人從價差凹性發生的情形下損失。另外我們也利用相關性敏感度來分析非標準型分劵的相關性風險。最後,我們連結違約相關性參數與delta避險值後發現,當違約相關性增加時,價差改變的風險會從非標準型低層分劵轉移到非標準型高層分劵。


    With the development of synthetic CDO standardized tranches, in order to fit in different investors’ risk preference, we try to value and hedge non-standardized tranches which are combined with market quotes of standardized ones. In this paper, we select a set of market quotes of standardized DJ iTraxx Europe tranches and use the Homogeneous Large Pool Gaussian Copula model to find the compound and base correlations of tranches. Moreover, we can value any non-standardized tranches by those base correlations. As to hedge non-standardized tranches, for the first-order risk, we focus on the spread risk and build up hedging positions by tranches’ deltas. We also discuss the second-order risk such as the spread convexity. We discover that the delta-hedged non-standardized equity tranche position can make investors benefit from the spread convexity. By contrast, the delta-hedged non-standardized senior tranche position can make investors suffer from the spread concavity. We also analyze the correlation risk by tranches’ correlation sensitivities. Finally, we connect the default correlation parameter with the deltas and we find that the spread risk is parceled to the senior tranche as the default correlation increases.

    1. Introduction 1 2. Synthetic CDOs 3 2.1. CDS Index 4 2.1.1. CDS Contract 4 2.1.2. CDS Index 4 2.1.3. CDS Index contract 5 2.2. Standardized Synthetic CDO tranches 6 3. Literature review 8 4. Homogeneous Large Pool Gaussian Copula Model 12 4.1. Deriving Expected Loss for a Synthetic CDO tranche 14 4.2. Valuation of a Synthetic CDO Tranche 18 4.2.1. Valuation of a plain-vanilla CDS 19 4.2.2. Valuation of a synthetic CDO tranche 21 4.3. Compound correlations in Synthetic CDO tranches 22 4.3.1. Effect of correlations on Synthetic CDO tranches 22 4.3.2. Concept of Compound correlation 24 4.3.3. Measure of Compound correlation 25 4.3.4 Correlation Smile 26 5. Valuation of Non-Standardized Synthetic CDO tranches 27 5.1. Base correlation 28 5.1.1. Concept of Base correlation 28 5.1.2. Calculation of base correlations 28 5.2. Valuation of Non-Standardized tranches from base correlations 31 6. Hedging with Non-Standardized Synthetic CDO tranches 34 6.1. Spread Sensitivity 34 6.1.1. Delta Hedge 34 6.1.2. Spread Convexity 41 6.2. Correlation Sensitivity 45 7. Conclusion 50 References 52

    Amato, J and Gyntelberg, J., (2005). CDS index tranches and the pricing of credit risk correlations. BIS Quarterly Review, March.
    Felsenheimer, J., Gisdakis, P., Zaiser M., (2004). DJ iTraxx: Credit at its best!. Global Markets Research European Credit Strategy, HVB.
    Gupton, G. M., Finger, C. C., Bhatia, M., (1997). CreditMetrics – Technical Document. Risk Management Research, Morgan Guaranty Trust Company.
    Gordy, M. (2003). A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules. Journal of Financial Intermediation 12(3), 199-232.
    Kakodkar, A., Martin, B., Galiani, S., (2003). Correlation Trading - A New Asset Class Emerges. Merrill Lynch Global Securities Research & Economics Group Fixed Income Strategy.
    Lehnert, N., Altrock, F., Rachev, S., Truck, S., Wilch, A., (2005). Implied Correlations in CDO Tranches. Working Paper.
    McGinty, L. and Ahluwalia, R., (2004a). Credit Correlation: A Guide. Credit Derivatives Strategy, JP Morgan.
    McGinty, L. and Ahluwalia, R., (2004b). Introducing Base Correlations. Credit Derivatives Strategy, JPMorgan.
    McGinty, L. and Ahluwalia, R., (2004c). A Model for Base Correlation Calculation. Credit Derivatives Strategy, JPMorgan.
    McGinty, L. and Ahluwalia, R., (2004d). A Relative Value Framework for Credit Correlation. Credit Derivatives Strategy, JP Morgan.
    Mashal, R., Naldi, M., Tejwani, G., (2004). The Implications of Implied Correlation. Lehman Brothers, Quantitative Credit Research. Working Paper.
    Reyfman, A., (2004). Valuing and Hedging Synthetic CDO Tranches Using Base Correlations. Credit Derivatives Research, BearStearns.
    Schönbucher, P. J. (2003). Credit Derivatives Pricing Models: Models, Pricing, and Imple-mentation. Jon Wiley & Sons.
    Turc, J. and Very, P. & Benhamou, D., (2005). Pricing CDOs with a smile. Quantitative Strategy, SG.
    Turc, J. and Very, P., (2004). Pricing and Hedging correlation products. Quantitative Strategy, SG.
    Vasicek, O. (1987). Probability of Loss on Loan Portfolio. KMV Corporation. Working Paper.
    Willemann, S., (2004). An Evaluation of the Base Correlation Framework for Synthetic CDOs. Working Paper.

    QR CODE
    :::