跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳愛美
Tran Huynh Khoa
論文名稱: 中滑移速度下高嶺石的製動效果(速度強化)
Braking effect (velocity- strengthening) of Kaolinite under intermediate slip velocities
指導教授: 董家鈞
Jia- Jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 速度強化摩擦爬行滑坡高嶺石速度相關的摩擦模型
外文關鍵詞: velocity-strengthening friction, Creeping landslides, Kaolinite, Velocity-dependent friction model
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    根據岩石力學理論,摩擦阻止滑動塊移動。此外,滑移速度影響摩擦強度。許多研究集中在界面的摩擦阻力減小而滑動速率增加。對於摩擦事件的許多要素,例如界面破裂前沿傳播的速度和它們釋放的儲存能量的數量,速度強化摩擦的重要性在很大程度上被忽視了。在中等滑移速度(10^(-7) to 1 m/s)下,通過低到高速旋轉剪切裝置對樣品進行一系列實驗,正應力為 1 MPa。本論文對剪切樣品進行了兩種不同的條件:恆速和速度步長。本研究表明,速度階躍樣品的穩態摩擦係數低於等速樣品的穩態摩擦係數。本研究結果與以往研究結果相比,穩態摩擦係數的標準偏差較大。本研究基於真實滑坡材料和純高嶺石的穩態摩擦係數結果建立了速度相關的摩擦模型。結合模型和摩擦係數只增不減的情況,即使移動體停止,本研究分析了爬行滑坡對平行滲流無限邊坡穩定性的影響。雖然真實滑坡材料和純高嶺石的摩擦強度不同,但破壞面以上地下水位高度(h_w)對結果的影響是相似的。調查結果表明,h_w 顯著影響加速度、速度和位移。如果 hw > hw-critical,則斜坡將繼續滑動而不會停止,從而使地下水位始終低於 hw-critical。本論文考慮了兩種情況: 1)如果同一個模型,最大加速度和最大速度增加,特別是隨著滑動質量的位移顯著增加; 2) 如果相同的 hw: a) 對於真正的滑坡材料,從 Model D-1 到 Model D-4(Ferri 等人,2011)以及從 Model W-5 到 Model W,最大加速度、速度和位移更大-8 純高嶺石,b) 地下水位達到峰值的持續時間越快,最大速度越高,累積位移越小。使用 Newmark 方法可以在不同情況下建立 hw 和摩擦係數之間的關係,例如斜坡幾何形狀和材料。從而設定滑坡預警閾值來評估邊坡的不穩定性。


    According to the rock mechanics theory, friction prevents the sliding mass
    moving. Furthermore, the slip velocity affectes the friction strength. A lot of
    research concentrate on the frictional resistance of the interfaces decreasing while
    the sliding rates increase. The importance of velocity-strengthening friction for
    numerous elements of frictional events, such as the speed of interfacial rupture
    fronts propagating and the quantity of stored energy released by them, has gone
    largely unnoticed. A series of experiments are carried out under intermediate slip
    velocities (10−7 to 1 m/s) on a sample via low to high-velocity rotary shear
    apparatus with the normal stress of 1 MPa. This thesis conducts two different
    conditions for shear samples: constant velocity and velocity-step. This study
    shows that the steady-state friction coefficient of velocity-step sample is lower
    than the one of constant velocity. Comparing the results of this study with the
    previous studies, the standard deviation of the steady-state friction coefficient are
    relatively large. This study builds velocity-dependent friction model based on the
    results of the steady-state friction coefficients of true landslide material and pure
    Kaolinite. With the combination of the model and the friction coefficient only
    increase without decreasing even the moving mass stops, this study analyzes the
    process of creeping landslides on the stability of infinite slopes with parallel
    seepage. Although the friction strength of true landslide material and pure
    Kaolinite is different, the effect of the height of water table above failure surface
    (hw) on results is similar. The investigation results showed that hw significantly
    impacts acceleration, velocity, and displacement. If hw > hw-critical, the slope will
    keep sliding without stopping so that keeps the groundwater table always below
    hw-critical. This thesis considers two cases: 1) If the same model, the maximum
    acceleration and velocity increase, especially with the displacement of the sliding
    mass significantly rising; 2) if the same hw: a) the maximum acceleration,
    velocity, and displacement are larger from Model D-1 to Model D-4 for true
    landslide material (Ferri et al., 2011) and from Model W-5 to Model W-8 for pure
    Kaolinite, and b) the faster the time duration to reach the peak of the groundwater
    table rises, the higher the maximum velocity, the accumulated displacement is
    smaller. Using the Newmark method it is possible to establish the relationship
    between hw and coefficient of friction in different cases, such as slope geometry
    and materials. Thereby setting a landslide warning threshold to assess the
    instability of the slope.

    LIST OF CONTENTS ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES xi LIST OF NOTATIONS xii INTRODUCTION 1 Motivation 1 Rainfall triggered landslide (shear dilation and groundwater) 1 Newmark displacement analysis 1 Velocity dependent friction model of sliding materials 3 Objectives 5 METHODOLOGY 6 Low- to high- velocity rotary- shear friction apparatus 6 Testing material 8 Calculation of kinematic of rainfall triggerd landslide 9 Infinite slopes in soils with parallel seepage. 9 The velocity-dependent friction model 10 The friction coefficient increased with increasing velocity will drop back to the original static friction coefficient 12 The friction coefficient will only go up without decreasing even the moving mass stopped 12 TESTING RESULTS OF PURE KAOLINITE 14 Teflon correction 14iv Experimental results under saturated condition. 15 Constant velocity test 15 Velocity-step test 18 Compare the results of the constant velocity and velocity-step. 19 Compare this study with the previous study. 20 The velocity-dependent friction model of pure Kaolinite. 21 KINEMATICS OF SHALLOW DEBRIS SLIDES DUE TO GROUNDWATER TABLE RISE: AIR DRY GOUGE MATERIAL BY (Ferri et al., 2011) 24 Critical groundwater table (hw-critical) 24 Parametric study 25 The variation of velocity-dependent friction model. 25 The peak groundwater table. 27 Groundwater table raising pattern. 28 KINEMATICS OF SHALLOW DEBRIS SLIDE DUE TO GROUNDWATER TABLE RISE: SUBMERGED PURE KAOLINITE GOUGE 30 Critical groundwater table (hw-critical) 30 Parametric study 30 The variation of velocity-dependent friction model. 30 The peak groundwater table. 32 Groundwater table raising pattern. 32 CONCLUSIONS 34 REFERENCES 36

    REFERENCES
    Aharonov, E., & Scholz, C. H. (2018). A physics‐based rock friction constitutive model:
    Steady state friction. Journal of Geophysical Research: Solid Earth, 123(2), 1591-
    1614.
    An, M., Zhang, F., Zhang, L., & Fang, Y. (2018). Effects of Normal Stress and Clay
    Content on the Frictional Properties of Reservoir Rocks under Fully Saturated
    Conditions. GeoShanghai International Conference, Springer, Singapore, 220-231.
    Bordoni, M., Valentino, R., Meisina, C., Bittelli, M., & Chersich, S. (2018). A simplified
    approach to assess the soil saturation degree and stability of a representative slope
    affected by shallow landslides in Oltrepò Pavese (Italy). Geosciences, 8(12), 472.
    Cellek, S. (2020). Effect of the Slope Angle and Its Classification on Landslide. Natural
    Hazards and Earth System Sciences Discussions, 1-23.
    Chen, Y. Z. (2018). Frictional and kinematical characteristics of the Hungtsaiping
    landslide, Master thesis, National Central University, Taiwan.
    Deng, Y., Yan, S., Scaringi, G., Liu, W., & He, S. (2020). An empirical power
    oscillation‐based friction model and its implications for coherent landslide
    mobility. Geophysical Research Letters, 47(11), e2020GL087581.
    Dieterich, J. H. (1979). Modeling of rock friction: 2. Simulation of preseismic slip.
    Journal of Geophysical Research: Solid Earth, 84(B5), 2169-2175.
    Dieterich, J. H. (1981). Constitutive properties of faults with simulated gouge.
    Mechanical Behavior of Crustal Rocks, 24, 103-120.
    Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., &
    De Rossi, N. (2011). Low‐to high‐velocity frictional properties of the clay‐rich
    gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of
    Geophysical Research: Solid Earth, 116, B09208.
    Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip
    weakening of simulated faults in gabbro during frictional melting. Journal of
    Geophysical Research: Solid Earth, 110, B05202.
    Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide
    types, an update. Landslides, 11(2), 167-194.
    Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources
    Research, 36(7), 1897-1910.
    Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure
    feedback. Journal of Geophysical Research: Earth Surface, 110, F000268.
    Jibson, R. W. (1993). Predicting earthquake-induced landslide displacements using
    Newmark's sliding block analysis. Transportation Research Record, 1411, 9-17.
    Kuo, L. W., Wu, W. J., Kuo, C. W., Smith, S. A., Lin, W. T., Wu, W. H., & Huang, Y.
    H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges
    at seismic slip velocities. Journal of Structural Geology, 150, 104419.
    Lee, Y. W. (2017). Relationship of frictional characteristics of kaolin clay in different
    slip rates and drainage conditions, Master thesis, National Central University,
    Taiwan.37
    Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., & Fellin, W. (2014). Spatially
    distributed three-dimensional slope stability modelling in a raster GIS.
    Geomorphology, 206, 178-195.
    Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2007). Reconstruction of
    seismic faulting by high‐velocity friction experiments: An example of the 1995
    Kobe earthquake. Geophysical Research Letters, 34, L01308.
    Newmark, N. M. (1965). Effects of earthquakes on dams and embankments.
    Geotechnique, 15(2), 139-160.
    Pham, Q. V. (2019). Velocity-dependent frictional properties of kaolinite clay under
    different drainage conditions with temperature measurement, Master thesis,
    National Central University, Taiwan.
    Rice, J. R., & Ruina, A. L. (1983). Stability of steady frictional slipping. Journal of
    Applied Mechanics, 50(2), 343-349.
    Ruina, A. (1983). Slip instability and state variable friction models. Journal of
    Geophysical Research: Solid Earth, 88(B12), 10359-10370.
    Saroli, M., Albano, M., Atzori, S., Moro, M., Tolomei, C., Bignami, C., & Stramondo,
    S. (2021). Analysis of a large seismically induced mass movement after the
    December 2018 Etna volcano (southern Italy) seismic swarm. Remote Sensing of
    Environment, 263, 112524.
    Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009). Relations between
    hydrology and velocity of a continuously moving landslide—evidence of porepressure feedback regulating landslide motion?. Landslides, 6(3), 181-190.
    Shimamoto, T. (1994). A new rotary-shear high-speed frictional testing machine: its
    basic design and scope of research. Journal Tectonic Research Group of Japan, 39,
    65-78.
    Skempton, A. (1964). Long-term stability of clay slopes. Geotechnique, 14(2), 77-102.
    Terzaghi, K. (1950). Mechanism of landslides (Berkey volume). Geological Society of
    America, New York, 83-124.
    Togo, T., Shimamoto, T., Ma, S.L., & Hirose, T., (2011). High-velocity friction of faults:
    A review and implication for landslide studies. The Next Generation of 106
    Research on Earthquake-induced Landslides: An International Conference in
    Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
    Togo, T., Shimamoto, T., Dong, J. J., Lee, C. T., & Yang, C. M. (2014). Triggering and
    runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan
    Chi‐Chi earthquake, as revealed by high‐velocity friction experiments.
    Geophysical Research Letters, 41(6), 1907-1915.
    Tran, N. T. (2021). The relationship of kaolinite friction characteristics and temperature
    changing in submerged conditions, Master thesis, National Central University,
    Taiwan.
    Varnes, D. J. (1978). Slope movement types and processes. In: Schuster, R. L., Krizek
    R. J., Eds., Landslides — Analysis and control: National Research Council,
    Washington, D. C., Transportation Research Board, Special Report, 176, 11–33.38
    Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T., Togo, T.,
    & Miyamoto, Y. (2014). Initiation, movement, and run-out of the giant Tsaoling
    landslide — what can we learn from a simple rigid block model and a velocity–
    displacement dependent friction model?. Engineering Geology, 182, 158-181.
    Yiğit, A. (2020). Prediction of amount of earthquake-induced slope displacement by
    using Newmark method. Engineering Geology, 264, 105385.
    Zhang, Y., Meng, X., Jordan, C., Novellino, A., Dijkstra, T., & Chen, G. (2018).
    Investigating slow-moving landslides in the Zhouqu region of China using InSAR
    time series. Landslides, 15(7), 1299-1315.
    Zhao, N., Hu, B., Yi, Q., Yao, W., & Ma, C. (2017). The coupling effect of rainfall and
    reservoir water level decline on the Baijiabao landslide in the Three Gorges
    Reservoir Area, China. Geofluids, 2017(12), 3724867.

    QR CODE
    :::