| 研究生: |
江淑媜 Shu-Chen Chiang |
|---|---|
| 論文名稱: |
奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究 |
| 指導教授: |
陳吟足
Yin-Zu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | CoB 、檸檬醛 、選擇氫化反應 、NiB 、奈米 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以化學還原法製備奈米NiB、CoB 及NiCoB 合金觸媒,
探討觸媒於檸檬醛之選擇性氫化行為,瞭解觸媒製備、反應溶劑(乙
醇、環己烷、正己烷)及促進劑對反應活性及選擇性之影響。
以NiB 為觸媒,鹽類選取以醋酸鎳最佳,反應溶劑以乙醇反應
活性最佳、環己烷次之、正己烷最差。NiB 觸媒不論催化活性或產
物選擇性皆明顯優於倫尼鎳觸媒,其中P-2WNiB 觸媒反應活性是
P-1NiB 的2.1 倍。NiB 觸媒之檸檬醛氫化反應路徑,皆優先選擇氫
化共軛C=C/C=O 中的C=C 鍵成香茅醛,再氫化共軛C=O 鍵成香茅
醇。以P-2WNiB 為觸媒,香茅醇會繼續氫化成全氫化產物3,7-二甲
基-辛醇,以P-1NiB 為觸媒,僅生成少量的全氫化產物。
NiB 觸媒的溶劑明顯影響反應活性與選擇率,以乙醇為檸檬醛
氫化反應溶劑時,明顯使反應速率加快。P-1NiB 觸媒,反應一小時
之轉化率相對大小為乙醇(2.1)>環己烷(1)>正己烷(0.6)。使用環己
烷為反應溶劑,幾無全氫化產物;使用乙醇溶劑時,則有微量的全
氫化產物產生。P-2WNiB 觸媒,不論使用環己烷或乙醇為反應溶劑,
皆不影響產物的分佈,唯使用乙醇溶劑時,反應速率加快。
添加鉻、釷、鎢促進劑於P-1NiB 觸媒中皆顯著促進反應活性,
其中又以鉻的促進效果最佳。反應一小時之轉化率相對大小為
10%Cr-NiB(4.7)>10%Th-NiB(3.9)>5%W-NiB(2.8)>P-1NiB(1)。在
中轉化率下,對主產物香茅醛之選擇率影響不大,在高轉化率下,
產物分佈則有明顯差異。添加鉻、釷、鎢促進劑,香茅醇會快速氫
化成全氫化產物。
以CoB 為觸媒,鹽類選取以醋酸鎳最佳,反應溶劑以乙醇反應活性最佳、環己烷次之、正己烷最差。CoB 觸媒不論催化活性或產物
選擇性皆明顯優於倫尼鈷觸媒,其中P-2WCoB 觸媒反應活性是
P-1CoB 的1.7 倍。CoB 觸媒之檸檬醛氫化反應路徑不同於NiB 觸媒,
皆優先選擇氫化共軛C=C/C=O 中的C=O 鍵成橙花醇與香葉醇,再氫
化共軛C=C 鍵成香茅醇,反應過程幾無全氫化產物,反應過程僅少
量香茅醛的生成。
CoB 觸媒的溶劑明顯影響反應活性,對選擇率的影響較小,以乙
醇為反應溶劑,反應速率明顯增快,以正己烷為反應溶劑,反應速率
反而下降。P-1CoB 觸媒,反應一小時之轉化率相對大小為乙醇(5.5)
>環己烷(1)>正己烷(0.2)。P-1CoB 觸媒,使用乙醇為反應溶劑,幾
無全氫化產物,且僅有微量的香茅醛(<3%)產生;使用環己烷溶劑
時,有相當量的香茅醛(10%)產生。
在P-1CoB 觸媒中,添加氧化鎢有較顯著的促進效果,添加氧化
釷與氧化鉻則幾無促劑效果。促進劑的氫化路徑皆與CoB 觸媒相同,
且最後只停留在香茅醇產物。添加鉻、釷促進劑,不影響橙花醇與香
葉醇之選擇率,添加鎢促進劑,使橙花醇與香葉醇之選擇率略降低。
NiCoB 雙金屬觸媒在與NiB 相同的反應條件下檸檬醛氫化活性
明顯優於NiB 觸媒,且Ni0.7Co0.3B 觸媒之氫化活性是NiB 的1.5 倍。
CoB 的存在使NiB 更具催化活性,NiB、CoB 並非獨自扮演催化角色,
NiB 與CoB 必然產生交互作用。
參考文獻
1. W. J. Wang, H. X. Li, and J. F. Deng, “Boron Role on Sulfur Resistance
by Carbon Disulfide in Cyclopentadiene Hydrogenation”,
Appl. Catal. A, 203 (2000) 293.
2. 吳坤哲, “硼化鈷系列觸媒對選擇性氫化反應的探討”, 國立中央
大學化學工程研究所碩士論文(1990).
3. 魏水文, “促進劑對硼化鈷觸媒於選擇性氫化反應之影響”, 國立
中央大學化學工程研究所碩士論文(1992).
4. G. Neri, C. Milone, A. Donato, L. Mercadante, and A. M. Visco,
“Selective Hydrogenation of Citral over Pt-Sn Supported on Activated
Carbon”, J. Chem. Tech. Biotechnol., 60 (1194) 83.
5. S. Galvagno, C. Milone, A. Donato, G. Neri, and R. Pietro- paolo ,
“Hydrogenation of Citral over Ru-Sn/C”, Catal. Lett., 17 (1993) 55.
6. G. Neri, L. Mercadante, C. Milone, R. Pietropaolo, and S.
Galvagno, “Hydrogenation of Citral and Cinnamaldehyde
over Bimetallic Ru-Me/Al2O3 Catalysts”, J. Mol. Catal. A,
108 (1996) 41.
7. J. N. Coupe, E. Jordao, M. A. Fraga, and M. J. Mendes, “A
Comparative Study of SiO2 Supported Rh-Sn Catalysts
Prepared by Different Methods in the Hydrogenation of
Citral”, Appl. Catal. A, 199 (2000) 45.
8. B. B. Baeza, I. R. Ramos, and A. G. Ruiz, “Influence of
Mg and Ce Addition to Ruthenium Based Catalysts Used
in The Selective Hydrogenation of α,β-Unsaturated
Aldehydes”, Appl. Catal. A, 205 (2001) 227.
9. L. P. Tiainen, P. M. Arvela, and T. Salmi, Catal. Today, 48 (1999) 57.
10. U. K. Singh, M. N. Sysak, and M. A. Vannice, “Liquid-
Phase Hydrogenation of Citral over Pt/SiO2 Catalysts”, J.
Catal., 191 (2000) 181.
11. U. K. Singh, and M. A. Vannice, “Liquid-Phase Hydrogenation
of Citral over Pt/SiO2 Catalysts”, J. Catal., 191
(2000) 165.
12. H. C. Brown, and C. A. Brown, “The Reacction of Sodium Borohydride
with Nickel Acetate in Aqueous Solution - A Convenient
Synthesis of an Active Nickel Hydrogenation Catalyst of Low
Isomerizing Tendency”, J. Am. Chem. Soc., 85 (1963) 1003.
13. 吳忠勳, “硼化鈷觸媒催化性質之研究”, 國立中央大學化學工
程研究所碩士論文(1989).
14. H. C. Brown, and C. A. Brown, “The Reaction of Sodium
Borohydride with Nickel Acetate in Ethanol Solution A Highly
Selective Nickel Hydrogenation Catalyst”, J. Am. Chem. Soc., 85
(1963) 1005.
15. 陳吟足, “硼化鎳觸媒的催化性質研究”, 國立台灣大學化學工程
研究所博士論文(1985).
16. M. H. Rei, L. L. Sheu, and Y. Z. Chen, “Nickel Boride Catalyst in
Organic Synthesis. I: A New Ferromagnetic Catalyst from the
Diborane Reduction of Nickel Acetate”, Appl. Catal., 23 (1986)
281.
17. N. N. Mal’tseva, Z. K. Sterlyadkina, and V. I. Mikheeva, Chem.
Abstr., 65 (1966) 1751f.
18. C. A. Brown, “Catalytic Hydrogenation. V. The Reaction of
Sodium Borohydride with Aqueous Nickel Salts. P-1 Nickel Borides, a Convenient, Highly Active Nickel Hydrogenation
Catalyst”, J. Org. Chem., 35 (1970) 1900.
19. J. S, A. I, and T. M, “The Effect of Reaction Condition on
Composition and Properties of Ultrafine Amorphous Powders in
(Fe, Co, Ni)-B Systems Prepared by Chemical Reduction”, Metal.
Trans. A, 22A (1991) 2125.
20. H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS
Studies on Surface Electronic Characteristics of Ni-B and Ni-P
Amorphous Alloy and Its Correlation on Their Catalytic Properties”,
Appl. Surf. Sci., 152 (1999) 25.
21. Y. Z. Chen, and K. J. Wu, “Hydrogenation Activity and
Selectivity of Cobalt Borides”, Appl. Catal., 78 (1991) 185.
22. J. Deng, J. Yang, S. Sheng, H. Chen, and G. Xiong, “The Study
of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as
Catalysts”, J. Catal., 150 (1994) 434.
23. W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, and J. F. Deng,
“Selective Hydrogenation of Cyclopentadiene to Cyclopentene
over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163
(1997) 101.
24. Y. Okamoto, Y. Nitta, I. Imanaka, and S. Teranishi, “Surface
Characterization of Nickel Boride and Nickel Phosphide Catalysts
by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc.
Faraday I., 75 (1979) 2027.
25. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface
State, Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76
(1980) 998.
26. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions III. Electronic and Catalytic Properties
of Nickel Catalysts”, J. Catal., 64 (1980) 397.
27. Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, “Surface
State and Catalytic Activity and Selectivity of Nickel Catalysts in
Hydrogenation Reactions IV. Electronic Effects on the Selectivity
in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
28. Y. Okamoto, E. Matsunaga, T. Imanaka, and S. Teranishi,
“Surface State and Catalytic Activity and Selectivity of Nickel
Catalysts in Hydrogenation Reactions V. Electronic Effects on
Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
29. A. H. Uken, and C. H. Bartholomew, “Borided Metal Catalysts in
Methanation of Carbon Monoxide I. Initial Activity and
Conversion-Temperature Behavior of Unsupported Catalysts”, J.
Catal., 65 (1980) 402.
30. S. H. Xie, H. X. Li, H. Li, and J. F. Deng, “Selective Hydrogenation
of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison
with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45.
31. H. Li, X. Li, and J. F. Deng, “Influence on the Reduction Degree of
Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydrogenation
of Acrylonitrile”, Appl. Catal. A,193 (2000) 9.
32. C. A. Brown, and V. K. Ahuja, “Catalytic Hydrogenation. VI.
The Reaction of Sodium Borohydride with Nickel Salts in
Ethanol Solution. P-2 Nickel, a Highly Convenient, New,
Selective Hydrogenation Catalyst with Great Sensitivity to
Substrate Structure”, J. Org. Chem., 38 (1973) 2226.
33. Z. G. Fang, B. R. Shen, J. Lu, K. N. Fan, and J. F. Deng, “DFT
Study of Electron Transfer between B and Ni in Ni-B Amorphous Alloy”, ACTA CHIMICA SINIA, 57 (1999) 894.
34. Y. Nitta, T. Imanaka, and S. Teranish, “Hydrogenation Activity and
Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts”,
Bull. Chem. Soc. Jpn., 53 (1980) 3154.
35. 陳義忠, “對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”, 國立中
央大學化學工程研究所碩士論文(1993).
36. 楊盛威, “硼化鎳觸媒於苯乙酮及二苯甲酮選擇性氫化反應之研
究”, 國立中央大學化學工程研究所碩士論文(1994).
37. 楊長峰, “苯胺氫化製程觸媒之改進”, 國立中央大學化學工程研
究所碩士論文(1996).
38. Z. B. Yu, M. H. Qiao, H. X. Li, and J. F. Deng, “Preparation of
Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their
Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1.
39. H. Li, H. X. Li, W. J. Wang, and J. F. Deng, “Excellent Activity of
Ultrafine Co-B Amorphous Alloy Catalyst in Glucose Hydrogenation”,
Chem. Lett., (1999) 629.
40. U. K. Singh, and M. A. Vannice, “Liquid-Phase Citral Hydrogenation
over SiO2-Supported Group VIII Metals” J. Catal., 199
(2001) 73.
41. G. Neri, L. Mercadante, A. Donate, A. M. Visco, and S. Galvagno,
“Influence of Ru Precursor, Support and Solvent in the Hydrogenation
of Citral over Ruthenium Catalysts”, Catal. Lett., 29 (1994)
379.
42. W. S. Millmen, and G. V. Smith, in: Catalysis in Organic Syntheses,
ed. G. V. Smith (Academic Press, New York, 1977) p. 33.
43. S. Galvagno, C. Milone, A. Donato, G. Neri, and R. Pietropaolo,
“Influence of Metal Particle Size in Hydrogenation of Citral over
Ru/C”, Catal. Lett., 18 (1993) 349.
44. B. Didillon, A. El Mansour, J. P. Candy, J. P. Bournonville, and J.
M. Basset, in: Heterogenous Catalysis and Fine Chemicals II, eds.
M. Guisent, J. Barrault, C. Bouchoule, D. Duprez, G. Perot, R.
Maurel, and C. Montassier (Elsevier, Amsterdam, 1991) p. 137.
45. A. A. Wismeijer, A. P. G. Kieboom, and H. van Bekkum, “Selective
Hydrogenation of Citronellal to Citronellol over Ru/TiO2 as
Compare to Ru/SiO2”, Appl. Catal., 25 (1986) 181.
46. L. Mercadante, G. Neri, C. Millone, A. Donato, and S. Galvagno,
“Hydrogenation of α,β–Unsaturated Aldehydes over Ru/Al2O3
Catalysts”, J. Mol. Catal. A, 105 (1996) 93.
47. A. M. Silva, O. A. A. Santos, M. J. Mendes, E. Jordão, and M. A.
Fraga, “Hydrogenation of Citral over Ruthenium-Tin Catalysts”,
Appl. Catal., 241 (2003) 155.
48. C. Milone, C. Ganermi, R. Ingoglia, G. Neri, and S. Galvagno,
“Role of Support in The Hydrogenation Citronellal on Ruthenium
Catalysts”, Appl. Catal. A, 184 (1999) 89.
49 W. Yu, H. Lin, M. Liu, and Z. Liu, “Selective Hydrogenation of
Citronellal over Polymer-Stabilized Noble Metal Colloids” React.
Func. Poly., 44 (2000) 21.
50. R. Malathi, and R. P. Viswanath, “Citral Hydrogenation on
Supported Platinum Catalysts”, Appl. Catal. A, 208 (2001) 323.
51. P. Reyes, H. Rojas, G. Pecchi, and J. L. G. Fierro, “Liquid-Phase
Hydrogenation of Citral over Ir-Supported Catalysts”, J. Mol.
Catal. A, 179 (2002) 293.
52. G. Lafaye, C. Micheaud-Especel, C. Montassier, and P. Marecot,
“Characterization of Bimetallic Rhodium-Germanium Catalysts
Prepared by Surface Redox Reaction”, Appl. Catal. A, 230 (2002)
19.
53. 蔡漢良, “硝基苯在P-1 硼化鎳觸媒之氫化反應”台大化工研究所
碩士論文(1984).
54. M. Kajitani, N. Suzuki, T. Abe, Y. Kaneko, K. Kasuya, K.
Takahashi, and A. Sugimor, “A Comparative Study of Nickel and
Cobalt Catalysts in the Hydrogenation of Substituted Acetopheones
Dependence of Hydrogenation Rate and Adsorption Strength on
Subsituted and Solvent”, Bull. Chem. Soc. Jpn., 52(8) (1979)
2343-2348.
55. R. A. Rajadhyasha, and S. L. Karwa, “Solvent Effects in Catalytic
Hydrogenation”, Chem. Eng. Sci., 41(7) (1986) 1765.
56. 廖炳傑, “CuB 超細合金觸媒之製備與催化性質探討”, 國立中央
大學化學工程研究所博士論文(2000).
57 D. V. Sokol’skii, A. M. Pak, M. A. Ginzburg, and V. A. Zavorin,
“The Hydrogenation of Citral to Citronellal on Ni/Al2O3”, (1979)
531-536.
58 John M. Prausnitz, University of California, Berkeley Ruediger N.
Lichtenthaler, University of Heidelberg Edmundo Gomes de Azevedo,
Technical University of Lisbon, “Molecular Thermodynamics
of Fluid-Phase Equilibria”, (1986) 59.