| 研究生: |
吳泰里 Tai-Li Wu |
|---|---|
| 論文名稱: |
針對體表燒燙傷傷口癒合研製具備抗菌及增強細胞生長功能之殼聚醣水凝膠---材料開發與功能性驗證 Design and Fabrication of an Antimicrobial Cell Growth Enhanced Chitosan Hydrogel for Burn Wound Healing --- Material Development and Function Validation |
| 指導教授: |
李宇翔
Yu-Hsiang Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生醫科學與工程學系 Department of Biomedical Sciences and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 銀離子抗菌 、水凝膠 、傷口癒合 、殼聚醣 、表皮生長因子 |
| 外文關鍵詞: | Silver ions, hydrogel, wound healing, Chitosan, EGF |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燒燙傷的傷口伴隨著形成水泡和腫脹的發生導致極度疼痛,傷口也很容易受到細菌感染,引發敗血症、蜂窩性組織炎…等,需要立即就醫。在這項研究中,我們主要是通過設計和製造含銀離子和表皮生長因子奈米粒子(Chitosan-Sodium Triphosphate encapsulated EGF,CTENPs)的合成殼聚醣水凝膠(Chitosan-PVA including CTENPs and Silver ions Hydrogel,SCPEHG)),設計和製造一種改善燒燙傷創面癒合水凝膠,這是一種有效率的策略,可以同時提供抗菌和加速治癒功能。EGF的殼聚醣奈米粒子是通過使用正負離子作交聯凝聚製成的。透過DLS分析,EGF的奈米顆粒的大小和表面電荷分別為352 ± 16 nm。根據抗菌、細胞毒性和細胞生長檢測效果,確定SCPEHG最佳濃度是24 mM〖 Ag〗^+和60 μg/mL EGF是很有效的。在體外實驗中可發現仍有96%以上的細胞存活率,我們還可以注意到該細胞的生長隨著EGF奈米粒子濃度越高生長越快。我們對SCPEHG進行了釋放測試,EGF水凝膠在PBS中在48小時內釋放為187 ng/mL,發現複合水凝膠能夠提供持續釋放的〖" Ag" 〗^"+" 和EGF,表明開發的SCPEHG非常適合在富含離子環境下治療燒燙傷。總結,開發出來水凝膠在治療傷口和增強細胞生長方面具有很高優勢。
The wound region of second degree burn involves epidermis and portions of upper dermis and lower dermis. It is formed with blistered and swollen, and is easily infected with microbiomes, result in extremely painful. The clinical syndromes include fever, erythema, edema, suppuration. That require immediate medical treatment to avoid further complications. In this study, we aim to provide an effective strategy for an improved burn wound healing efficiency through design and fabrication of a synthetic chitosan-based hydrogel containing silver ions and epidermal growth factor (EGF) nanoparticles named as (SCPEHG) chitosan nanoparticle EGF hydrogel that may provide both antibacterial and would healing-enhanced functionalities. The EGF encapsulated chitosan nanoparticles were fabricated by using polyanionic as the coacervation crosslink agent. Through the DLS analysis, the size and surface charge of the EGF-loaded nanoparticles are 352 ± 16 nm and 20.5 ± 2.3 mV, respectively. The encapsulation efficiency and the loading rate of the EGF in the nanoparticles were 93.13% and 0.044%. The optimal effective dosages of 24 mM Ag+ and 60 ug/mL EGF for the SCPEHG manufacture were first determined based on the results of antibacterial, cytotoxicity, and cell growth examinations. When the silver ions released in 48 hours, the SCPEHG release were 6.70 mg/L and we can find over 96% cells survival in vitro experiments. The EGF hydrogel release were 1.3 ng/mL in PBS in 48 hours, we also can notice that the cell grow up more fast than in water. We characterized the optimized SCPEHG and found that the composite hydrogel was able to provide sustained release of Ag+ and EGF, and exhibited a significantly higher hydration capacities, including the swelling degree and equilibrium water content, in PBS than those in deionized water, showing that the developed SCPEHG is highly applicable in the ion-rich environment such as burns wound site. In summary, we develop the hydrogel is highly advantageous for curing burns wound and enhancing cell growth.
1. Mayhall, C.G., The epidemiology of burn wound infections: then and now. Clin Infect Dis, 2003. 37(4): p. 543-50.
2. Robins, E.V., Immunosuppression of the burned patient. Crit Care Nurs Clin North Am, 1989. 1(4): p. 767-74.
3. Cohen, J., The immunopathogenesis of sepsis. Nature, 2002. 420(6917): p. 885-91.
4. Gan, Q. and T. Wang, Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces, 2007. 59(1): p. 24-34.
5. Johnson, R.M. and R. Richard, Partial-thickness burns: identification and management. Advances in skin & wound care, 2003. 16(4): p. 178-187.
6. Grade, S., et al., Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. Rsc Advances, 2012. 2(18): p. 7190-7196.
7. Shlash, S.O., et al., Demographic characteristics and outcome of burn patients requiring skin grafts: a tertiary hospital experience. Int J Burns Trauma, 2016. 6(2): p. 30-6.
8. Foley, F.D., The burn autopsy. Fatal complications of burns. Am J Clin Pathol, 1969. 52(1): p. 1-13.
9. Pencle, F.J., H. Zulfiqar, and M. Waseem, First Degree Burn. 2017.
10. Parrett, B.M., et al., Fourth-degree burns to the lower extremity with exposed tendon and bone: a ten-year experience. Journal of burn care & research, 2006. 27(1): p. 34-39.
11. Church, D., et al., Burn wound infections. Clinical microbiology reviews, 2006. 19(2): p. 403-434.
12. Hettiaratchy, S. and R. Papini, Initial management of a major burn: II—assessment and resuscitation. Bmj, 2004. 329(7457): p. 101-103.
13. Pallua, N., Methods of burn treatment. Part I: general aspects. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen, 2006. 77(1): p. 81-92; quiz 93-4.
14. Robins, E.V., Burn shock. Critical care nursing clinics of North America, 1990. 2(2): p. 299-307.
15. Rowan, M.P., et al., Burn wound healing and treatment: review and advancements. Critical care, 2015. 19(1): p. 243.
16. Williams, F.N., et al., The leading causes of death after burn injury in a single pediatric burn center. Critical care, 2009. 13(6): p. 1-7.
17. Atiyeh, B.S., S.N. Hayek, and S.W. Gunn, New technologies for burn wound closure and healing—review of the literature. Burns, 2005. 31(8): p. 944-956.
18. Tarnowski, K.J., et al., Pediatric burn injury: Self-versus therapist-mediated debridement. Journal of pediatric psychology, 1987. 12(4): p. 567-579.
19. McCulloch, J., Physical modalities in wound management: Ultrasound, vasopneumatic devices and hydrotherapy. Ostomy/wound management, 1995. 41(5): p. 30-2, 34, 36-7.
20. Paquette, D. and V. Falanga, Leg ulcers. Clinics in geriatric medicine, 2002. 18(1): p. 77-88.
21. Manna, B. and C.A. Morrison, Wound debridement, in StatPearls [Internet]. 2020, StatPearls Publishing.
22. Granick, M., et al., Toward a common language: surgical wound bed preparation and debridement. Wound repair and regeneration, 2006. 14: p. S1-S10.
23. Vaghardoost, R., et al., Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers in medical science, 2018. 33(3): p. 603-607.
24. Condé-Green, A., et al., Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plastic and reconstructive surgery, 2016. 137(1): p. 302-312.
25. Arnold, C., New Science Shows How Maggots Heal Wounds. Scientific American, 2013. 308(4).
26. Dauwe, P.B., et al., Does hyperbaric oxygen therapy work in facilitating acute wound healing: a systematic review. Plastic and reconstructive surgery, 2014. 133(2): p. 208e-215e.
27. Myers, R.A., Hyperbaric oxygen therapy for trauma: crush injury, compartment syndrome, and other acute traumatic peripheral ischemias. International anesthesiology clinics, 2000. 38(1): p. 139-151.
28. Zamierowski, D.S., Wound dressing and treatment method. 1990, Google Patents.
29. Lock, P.M. and D.R. Webb, Wound dressing materials. 1980, Google Patents.
30. Dzurická, B.L., P. Matoušková, and M. Weiter, Zadání diplomové práce.
31. Chern, P.L., C.L. Baum, and C.J. Arpey, Biologic dressings: current applications and limitations in dermatologic surgery. Dermatologic surgery, 2009. 35(6): p. 891-906.
32. Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings–a review. BioMedicine, 2015. 5(4).
33. Donati, I. and S. Paoletti, Material properties of alginates, in Alginates: Biology and applications. 2009, Springer. p. 1-53.
34. Batdorf, D. and M.-C. Yun, Compressible foam wound dressing. 2002, Google Patents.
35. Brown, G.L., et al., Enhancement of wound healing by topical treatment with epidermal growth factor. New England Journal of Medicine, 1989. 321(2): p. 76-79.
36. Moulin, V., Growth factors in skin wound healing. European journal of cell biology, 1995. 68(1): p. 1-7.
37. Boateng, J. and O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. Journal of pharmaceutical sciences, 2015. 104(11): p. 3653-3680.
38. Fong, J. and F. Wood, Nanocrystalline silver dressings in wound management: a review. international Journal of Nanomedicine, 2006. 1(4): p. 441.
39. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 2000. 52(4): p. 662-668.
40. Eming, S.A., T. Krieg, and J.M. Davidson, Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology, 2007. 127(3): p. 514-525.
41. Gurtner, G.C., et al., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314-321.
42. Wang, L., et al., Drug resistance analysis of bacterial strains isolated from burn patients. Genet. Mol. Res, 2014. 13(9727): p. 34.
43. Bhattarai, N., J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 2010. 62(1): p. 83-99.
44. Jin, L. and R. Bai, Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 2002. 18(25): p. 9765-9770.
45. Muratoglu, O.K., et al., PVA hydrogel. 2007, Google Patents.
46. Jiang, S., S. Liu, and W. Feng, PVA hydrogel properties for biomedical application. Journal of the mechanical behavior of biomedical materials, 2011. 4(7): p. 1228-1233.
47. Salman, S., N. Bakr, and H. Humad, Section C: physical sciences DSC and TGA properties of PVA films filled with Na2S2O35H2O salt. J. Chem. Biol. Phys. Sci., 2018. 8: p. 001-011.
48. Shirakata, Y., et al., Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. Journal of cell science, 2005. 118(11): p. 2363-2370.
49. Barrientos, S., et al., Growth factors and cytokines in wound healing. Wound repair and regeneration, 2008. 16(5): p. 585-601.
50. Méric, G., et al., Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature communications, 2018. 9(1): p. 1-11.
51. Tripathi, S., G. Mehrotra, and P. Dutta, Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International journal of biological macromolecules, 2009. 45(4): p. 372-376.
52. https://www.roosinmedical.com/first-aid-products/burn-gel-dressing/hydrogel-burn-plaster.html.
53. https://www.acelity.com/healthcare-professionals/global-product-catalog/catalog/nu-derm-hydrocolloid-wound-dressing.
54. https://www.fvdvooren.nl/alginaat-kompres-melgisorb-cavity-streng-32cm/itm/13164.
55. https://indonesian.alibaba.com/product-detail/hot-selling-gel-foam-dressing-to-stop-bleeding-for-wholesales-60369888288.html.
56. https://www.santinel.com/fr/produits/pansement/pansement-tegaderm-6-x-7-cm-seconde-peau-brulure-et-coupure/.
57. http://www.acrobiomedical.com/index.php?option=product&lang=cht&task=pageinfo&id=146&belongid=37&index=1.
58 .
https://www.molnlycke.cn/products-solutions/mepilex-ag/.
59. https ://en.wikipedia.org/w/index.php?title=Staphylococcus&oldid=9712336.